Shielded Transaction Protocol

CONTENTS

1o OVERVIEW oottt 1
y D (0 VY 1 () 2
3. CRYPTOGRAPHIC PRIMITIVESooooooooesssssssssssssssssssssssssesssssesesesesesesessesesesessesesess 4
35 DR) \(600)5) 1 (B 200 R 4
3T 0100 (Y VN T 5
I TR ¢ 111 & 2101 N oy i (0) Y 5
3.3.1. BLAKE2 HASH FUNCTION.......oooosesssssssssssssesssssesesesessssesetesesesesessesesesesesesesesesoe 5
3.3.2. CRHIVKHASH FUNCTION .coocoossssssssssssssssesesssesesessesssesesetetesesesesssesteseseseseses 5
3.3.3. DIVERSIFYHASH FUNCTION ...ococoorrsrsrsn

3.3.4. PEDERSEN HASH FUNCTION

3.3.5. MIXING PEDERSEN HASH FUNCTION..oosssssssssssssssssssssessssssssessessesesesse 6
34. PSEUDO RANDOM FUNCTION...ccooorsrsrsrsr 7
3.5. AUTHENTICATED ONE-TIME SYMMETRIC ENCRYPTION.....cooeromrssssssssssssssess 7
3.6. KEY AGREEMENT AND DERIVATIONocooomssssssssssssssssssssssssssssosssessss 7
IR 11):110): 70N 30323 011011101 JN 8
3.7.1. SPEND AUTHORIZATION SIGNATURE......cocosmsssssssssssssssssssssssssssssssssesssesn 10
3.7.2. BINDING SIGNATURE ..ooooororssssssssssssssssssssssssesssssssssssssesssososesessssessessesses 10
3.8. GROUP HASH INTO JUBJUB ...ooooorssssssssssssssssssesssssssssssssossssesesssssessesssons 10
3.9, COMMITMENT SCHEMES ..ooccoosssssssssssssssssssssssesssssssssssssosssesessssssessesssos 10
3.9.1. NOTE COMMITMENTS ..ooooororrssssssssssssssssssssssssessssssssssssssososssesesssessesosseses 10
3.9.2. VALUE COMMITMENTS...oococoimmssisssssssssssssesssessssssssssssssssssosssesesessossesesesesoes 11
T 000) (0421 4 ¢ 11
41. PAYMENT ADDRESSES AND KEYS.....occocosmomssmsmsmmssmsssssissssssssssssssssssssssssss 11
D (0 1 XS 12
43. TRANSACTIONS AND TREESTATES....coocommmsmmimmmmssmsssmsssssssmssssssssssssssssssssss 13
44. SPEND DESCRIPTIONS AND RECEIVE DESCRIPTIONS.....ocoormmmmmsmmsmsmmsmosmsmssss 13
4.5, NULLIFIER SETS.ooissossosossssososssissssssssssssssssssssssssssosssssssssssssssssssssssssssossssssssss 14
5. ZK-SNARK.oooooororsssssssssssssssssssssssssssssies

51. ZERO-KNOWLEDGE PROOF MODEL

5.2. CONSTRUCT ZK-SNARK....oooorororssimsmsssssssssssssssssssssssssssssesssssssssosssesesssssssssesssssesoe 15
5.2.1. GENERATE ARITHMETIC CIRCUIT .ooocoorrrssssssssssssssssssssssssssssssssssesssssssssssssssnes 15
S T L oF 15
S0 T 0 - B 17
524 ZK-SNARK coorrrssomosessmssssssssssssssssssssssssesssssesssososesesesssssesesssssssssssssssesssssssssssssssos 18
6. SHIELDED TRANSACTION.....ccoorsrememsmossssssssssssssssesssssssssssssssssssssssssssesesesssssssssssssssnes 18
6.1, TRUSTED SETUP .o.ocorrmssmomsmsmssesesesssssssssssssssn 20
L 17N 1) 0 5 20
6.2.1. CREATE PAYMENT ADDRESS.....coooommmemmomsssmsmsmssssssesssssssssssssssssssssssssssssssssssssssn 20

6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.
6.2.7.
6.2.8.

6.2.8.1.
6.2.8.2.

6.2.9.
6.3.
6.3.1.

6.3.1.1.
6.3.1.2.
6.3.1.3.
6.3.1.4.
6.3.1.5.
6.3.1.6.

6.3.2.

6.3.2.1.
6.3.2.2.
6.3.2.3.
6.3.2.4.

6.4.
6.4.1.
6.4.2.

7. REFERENCESsssssssssssssssssssanns
APPENDICESsssstssssssssesssssssssssssanas

A.

A.1.1 CREATE SHIELDED TRANSACTION ...cceemeureureererrsereenns
A.1.2 SIGNATURE..ccvemermerrersesrsesessessessessessens
A.1.3 BROADCAST TRANSACTION
A.2 TRANSACTION FROM SHIELDED ADDRESS TO SHIELDED ADDRESS
A.2.1 GET VOUCHER ..ctvetrerrersesesessessessessessessesssssssssssssssssssnns
A.2.2 CREATE TRANSACTION....ccremerrerrerreereeseenns
A.2.3 BROADCAST TRANSACTION ..oeureruneereenenseesnenns

SCAN BLOCKCHAINisnrisirnsnns

CREATE SPEND PROOF.....isirnns

SIGNATURE WITH RE-RANDOMIZABLE KEYS

CREATE OUTPUT PROOQOF-......rirnranns

BINDING SIGNATURE.......cooomrrrrrrrrrarnen.

NOTE ENCRYPTION.....ccomrrrrrrrirnnns

NOTE DECRYPTION....cocvvuvnrrrrrurrirnnns

NOTE DECRYPTION WITH IVK

NOTE DECRYPTION WITH OVK

BROADCAST TRANSACTION.....ocvrrirrerirnnnen.
BLOCK CHAIN ..rrsnrssssssssssssssssssssssssnens
VERIFY TRANSACTION.....onvvrrrerrrrernerenns

VERIFY SPEND AUTHORITY SIGNATURE
VERIFY SPEND PROOFerrrrerrerenns

VERIFY OUTPUT PROOF......rrrerreens

VERIFY BINDING SIGNATURE

VERIFY NULLIFIER ...iiirniarane.

VERIFY OTHERS. ...

EXECUTE TRANSACTION....curnrrirrnrirnsrenns

PROCESS TRANSPARENT INPUT

SAVE CM, UPDATE TREE

SAVE NULLIFIER ..

PROCESS TRANSPARENT OUTPUT

CONTRACT .corrrrirnssrssssssssssssssssssssssssssssssssannns

USER APIS..sssrssssssssssssssssssssinns

SHIELDED TRANSFER CONTRACT

1. Overview

TRONZ team from TRON community has implemented shielded transaction. This specification is
intended to give a concise summary of the protocol.

Value in transaction is either transparent or shielded. Shielded value is carried by notes, which
specify an amount and (indirectly) a shielded payment address, which is a destination to which
notes can be sent. Note is associated with a private key named spending key that can be used to
spend notes sent to the address.

To each note there is cryptographically associated a note commitment. Once the transaction
creating the note has been mined, it is associated with a fixed note position in MerkleTree that is
a tree of note commitments, and with a nullifier unique to that note. Computing the nullifier
requires the nullifier deriving key. It is infeasible to correlate the note commitment or note
position with the corresponding nullifier without knowledge of at least this key. An unspent valid
note, at a given point on the block chain, is one for which the note commitment has been
publically revealed on the block chain prior to that point, but the nullifier has not.

A transaction can contain transparent inputs and outputs. It also includes Spend descriptions,
and Receive descriptions. Together these describe shielded transfers which take in shielded input
notes, and/or produce shielded output notes. We support one input, and two outputs at
most(Technically, we could support many inputs and outputs). Each shielded input or shielded
output has its own description. It is also possible for value to be transferred between the trans-
parent and shielded domains.

The nullifiers of the input notes are revealed (preventing them from double-spending) and the
commitments of the output notes are revealed (allowing them to be spent in future). A
transaction also includes computationally sound zk-SNARK proofs and signatures, which prove
that all of the following hold except with insignificant probability:

For shielded input,

e there is a revealed value commitment to the same value as the input note;

e if the value is non-zero, some revealed note commitment exists for this note;

« the prover knew the proof authorizing key of the note;

e the nullifier and note commitment are computed correctly.

and for each shielded output,

e there is a revealed value commitment to the same value as the output note;

 the note commitment is computed correctly;

« it is infeasible to cause the nullifier of the output note to collide with the nullifier of any other
note.

In addition, various measures are used to ensure that the transaction cannot be modified by a
party not authorized to do so.

Outside the zk-SNARLK, it is checked that the nullifiers for the input notes had not already been
revealed (i.e. they had not already been spent).

A shielded payment address includes a transmission key for a key-private asymmetric encryption
scheme. “Key- private” means that ciphertexts do not reveal information about which key they
were encrypted to, except to a holder of the corresponding private key, which in this context is
called the receiving key. This facility is used to communicate encrypted output notes on the block
chain to their intended recipient, who can use the receiving key to scan the block chain for notes
addressed to them and then decrypt those notes.

For each spending key there is a full viewing key that allows recognizing both incoming and
outgoing notes without having spend authority. This is implemented by an additional ciphertext
in each Output description.

The basis of the privacy properties is that when a note is spent, the spender only proves that
some commitment for it had been revealed, without revealing which one. This implies that a
spent note cannot be linked to the transaction in which it was created. That is, from an
adversary’s point of view the set of possibilities for a given note input to a transaction—its note
traceability set— includes all previous notes that the adversary does not control or know to have
been spent.

The nullifiers are necessary to prevent double-spending: each note on the block chain only has
one valid nullifier, and so attempting to spend a note twice would reveal the nullifier twice, which
would cause the second transaction to be rejected.

2. Notation

B means the type of bit values, i.e. {0, 1}. B Y means the type of byte values, i.e. {0 ... 255}. N
means the type of nonnegative integers. N* means the type of positive integers. Z means the type
of integers. Q means the type of rationals.

x:T is used to specify that x has type T. A cartesian product type is denoted by S x T, and a

function type by S — T.An argument to a function can determine other argument or result
types.

R
The type of a randomized algorithm is denoted by S — T. The domain of a randomized algorithm
R
may be (), indicating that it requires no arguments. Given f: S = T and s: S, sampling a variable

R
x: T from the output of f applied to s is denoted by x « f (s).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if x: X,
y:Y,and f : X XY — Z,thenan invocation of f(x, y) can also be written f,(y).

{x:T | p,} means the subset of x from T for which p, (a Boolean expression depending on x) holds.
T € U indicates that T is an inclusive subset or subtype of U. S U T means the set union of S and T.
SNT means the set intersection of S and T, i.e. {x: S|x € T}.

S\ T means the set difference obtained by removing elements in T from S, i.e.{x:S|x & T }.

x:T — e,:U means the function of type T — U mapping formal parameter x to e, (an expression
depending on x). The types T and U are always explicit.

x:T »y4, ex:Umeansx:T = e,:U U {y]Jrestricted to the domain{x: T|e, # y}and range U.
P(T) means the powerset of T.

T!] where T is a type and £ is an integer, means the type of sequences of length £ with elements
in T. For example, B¥ means the set of sequences of # bits, and BY!¥ means the set of sequences
of k bytes.

BYNImeans the type of byte sequences of arbitrary length.
length(S) means the length of number of elements in S.
truncatey (S) means the sequence formed from the first k elements of S.

0x followed by a string of monospace hexadecimal digits means the corresponding integer
converted from hexadecimal. [0x00]' means the sequence of [zero bytes.

2

“« »

..” means the given string represented as a sequence of bytes in US-ASCII.
[0]' means the sequence of [zero bits. [1]' means the sequence of [one bits.
{a ...b} means the set or type of integers from a through b inclusive.

[f (x) for x from a up to b] means the sequence formed by evaluating f on each integer from a
to b inclusive, in ascending order. Similarly, [f (x) for x from a down to b | means the sequence
formed by evaluating f on each integer from a to b inclusive, in descending order.

a || b means the concatenation of sequences a then b.

concatg(S) means the sequence of bits obtained by concatenating the elements of S viewed as bit

sequences. If the elements of S are byte sequences, they are converted to bit sequences with the
most significant bit of each byte first.

sorted(S) means the sequence formed by sorting the elements of S.

F,, means the finite field with n elements, and [F;, means its group under multiplication (which
excludes 0).

Where there is a need to make the distinction, we denote the unique representative of a: F, in the
range {0 ..n - 1} (or the unique representative of a:[F;, in the range {1 .. n - 1}) as a mod n.
Conversely, we denote the element of F,, corresponding to an integer k:Z as k (mod n). We also
use the latter notation in the context of an equality k = k' (mod n) as shorthand for k mod n=k’
mod n, and similarly k=K (mod n) as shorthand for k mod n#k mod n. (When referring to
constants such as 0 and 1 it is usually not necessary to make the distinction between field
elements and their representatives, since the meaning is normally clear from context.)

F, [x]means the ring of polynomials over x with coefficients in [F,,.

a + b means the sum of a and b. This may refer to addition of integers, rationals, finite field
elements, or group elements according to context.

—-a means the value of the appropriate integer, rational, finite field, or group type such that (-a) +
a =0 (or when a is an element of a group G, (-a) + a = Og), and a - b means a + (-b).

a - b means the product of multiplying a and b. This may refer to multiplication of integers,
rationals, or finite field elements according to context (this notation is not used for group
elements).

a/b, also written %, means the value of the appropriate integer, rational, or finite field type such
that (a/b) -b=a.

amod q, for a: N and ¢g: N*, means the remainder on dividing a by q. (This usage does not conflict
with the notation above for the unique representative of a field element.)

a @ b means the bitwise-exclusive-or of a and b, and a & b means the bitwise-and of a and b.
These are defined on integers or (equal-length) bit sequences according to context.

YN | a;means the sum of a; y.[[; a;means the product of a; . @Y ;means the bitwise
exclusive-or of a; y. When N = 0 these yield the appropriate neutral element, i.e. ¥\, a; = 0,
[1%-,a; = 1,and @Y., = 0 or the all-zero bit sequence of the appropriate length given by the type
of a.

va, where a: [F, means the positive (i.e. in the range {O...q%l}) square root of a in [F,. It is only used
in cases where the square root must exist.

b?x:y means x whenb =1, or y when b = 0.

aP for a: an integer or finite field element and b: Z, means the result of raising a to the exponent b,

ie.
(b
Ha, if b >0.
ab :=

i=1

T 71721 .

k| | —, otherwise
i=1a

The convention of affixing * to a variable name is used for variables that denote bit-sequence
representations of group elements.

The binary relations <, <, =, 2, and > have their conventional meanings on integers and rationals,
and are defined lexicographically on sequences of integers.
floor(x) means the largest integer < x. ceiling (x) means the smallest integer = x.

bitlength(x), for x: N, means the smallest integer [such that 2L > «x.

The symbol L is used to indicate unavailable information, or a failed decryption or validity check.

3. Cryptographic Primitives
3. 1. Encoding rules

All integers encodings are unsigned, have a fixed bit length, and are encoded in little-endian byte
order unless otherwise specified.

The following functions convert between sequences of bits, sequences of bytes, and integers:

¢ I2LEBSP: (I:N) x {0..2'—1} —» B!, such that I2LEBSP,(x) is the sequence of [bits
representing x in little-endian order;

¢ I2BEBSP: (I:N) x {0..2"' — 1} — B'such that I2BEBSP, (x) is the sequence of bits
representing x in big-endian order.

e LEOS2IP:(I:N| Imod 8 = 0) x B8 - (0...2! — 1} such that LEOS2IP(S) is the integer
represented in little-endian order by the byte sequence S of length [/8.

o l
« LEBS20SP: (1:N) x B — BY[%1m9®)] defined as follows: pad the input on the right with 8
ceiling (é) — [zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits

to a byte value with the least significant bit first, and concatenate the resulting bytes in the same
order as the groups.

s 1
«LEOS2BSP: (I:N|l mod 8 = 0) X BYlcetng@] _ I defined as follows: convert each byte to a
group of 8 bits with the least significant bit first, and concatenate the resulting groups in the same
order as the bytes.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read
from left-to- right, with lines read from top-to-bottom; the breaking of boxes across lines has no
significance. The bit length 1 is given explicitly in each box, except when it is obvious (e.g. for a
single bit, or for the notation [0]' representing the sequence of [zero bits, or for the output of
LEBS20SP)).

The entire diagram represents the sequence of bytes formed by first concatenating these bit
sequences, and then treating each subsequence of 8 bits as a byte with the bits ordered from most
significant to least significant. Thus, the most significant bit in each byte is toward the left of a
diagram. Where bit fields are used, the text will clarify their position in each case.

3. 2. Constants
MerkelDepth: N = 32

NOM: N =2
N"W:N = 2
Lyqiue: N = 64

lmerkie: N = 256

lPRFexpand: N =256

lprpny:N = 256

lLrem:N =256

lgp:N = 256

l;:N =88

lipi: N = 251

lovi: N = 256

lscatar: N = 252

Uncommited: B'merkte = [2LEBSP, (1)

3. 3. Hash Functions
3.3. 1. BLAKEZ Hash Function

BLAKE?2 is a hash defined in [ANWW2013], specifically, BLAKE2b and BLAKE2s variants are used
in shielded transaction.

BLAKE?2b,(p, x) refers to unkeyed BLAKE?2b, in sequential mode, with an output digest length of
1/8 bytes, 16-byte personalization string p, and input x.

BLAKE?2s,(p, x) refers to unkeyed BLAKE?2s, in sequential mode, with an output digest length of
1/8 bytes, 8-byte personalization string p, and input x.

3.3. 2. CRH:w Hash Function

CRH™¥is used to derive the incoming viewing key ivk for a shielded payment address. It is
defined as follow:

CRH™k (ak *,nk *) := LEOS2IP,5c(BLAKE2s,5¢("Zcashivk”, crhlnput)) mod 2%
Where

crhinput = (LEBS20SP,s¢(ak *) || LEBS20SP,sq(nk %))

3. 3. 3. DiversifyHash Function
DiversifyHash is used to derive a diversified base from a diversifier.

Let GroupHashH(r)* and U be defined in §3.8.

Define DiversifyHasth],(r)* = Grouphash?,(r)* ("ansh_gd", LEBS20SP,, (d))

3.3.4. Pedersen Hash Function

PedersenHash is an algebraic hash function with collision resistance (for fixed input length)
derived from assumed hardness of the Discrete Logarithm Problem on the Jubjub curve.

PedersenHash is used in the incremental Merkle tree over note commitments and in the
definition of Pedersen commitments

Let] ,]](T),OH, 13, a5, and djbe as defined in §3.7.
Let Extract J- JO) — Blmerkie be as defined in §3.7.

Let FindGroupHash 1D+ e as defined in §3.7.
Letc = 63
Define 7: BYI®] x N — J™* by:
9P = FindGroupHash)"* (D, 32bit(i — 1))
Define PedersenHashToPoint(D: BY®), M: BN*) -] as follows:

Pad M to a multiple of 3 bits by appending zero bits, giving M.

length(Ml))

Letn = ceiling(P

Split M'into n “segments” M, ,sothat M = concatg(M; ,),and eachof My , _4is of
length 3-c bits. (M,, may be shorter.)

Return Y™ ,[< M; >]3P: ™

Tﬂ—l

Where <->:BB{-cl _, -

. .rﬂzi}{O} is defined as:
Let k; = length(M;)/3
Split M; into 3-bit “chunks” m; sothat M; = concatg(m;).
Write each m as[s{, s/, sJ], and letenc(m) = (1—2-s)) - (1 +s{ +2-s{):Z
Let< M; > = Z;(i:l enc(my) - 24U,
Finally, define PedersenHash: BY[®l x BVt — Blmerkie by:

PedersenHash(D, M) = Extract j (PedersenHashToPoint (D, M))

3.3.5. Mixing Pedersen Hash Function

A mixing Pedersen hash is used to compute p from cm and pos. It takes as input a Pedersen
commitment P, and hashes it with another input x.

Define J = FindGroupHashD(T)*("ansh_]_", "M

Define MixingPedersenHash:] X {0..1‘1] - 1} - J by:
MixingPedersenHash(P,x) = P + [x] J

3.4. Pseudo Random Function

PRF®*adjs ysed in to derive the spend authorizing key ask and the proof authorizing key nsk.

It is instantiated using the BLAKE2b hash function

PRES™P™ (t) := BLAKE2bg;,("Zcash_ExpandSeed”, LEBS20SP (sk) || t)

PRF°*is used to derive the outgoing cipher key ock used to encrypt an output ciphertext .
It is instantiated using the BLAKE2b hash function.

PRF2% (cv,cm,, ephemeralKey) := BLAKE2b,ss(“Ztron_Derive_ock’, ockinput)

where
ockInput = LEBSZOSP256(ovk)||32byte cv| |32byte cmy||32byte ephemeralKey
PRF™ is used to derive the nullifier for a note. It is instantiated using the BLAKE2s hash function.

PRE™, (p*) = BLAKE2s,54(“Zcash_nf”, LEBS20SP,5¢(nk x)||LEBS20SP,5¢(p %))

nkx
3. 5. Authenticated One-Time Symmetric Encryption
Let Sym.K := BI?5¢] Sym.P := BYIN, and Sym.C := BYIN,

Let Sym. Encrypty(P) be authenticated encryption using AEAD_CHACHA20_POLY1305 [RFC-
7539] encryption of plaintext P € Sym. P, with empty “associated data", all-zero nonce [0]°°,
and 256-bitkey K € Sym.K.

Similarly, let Sym. Decrypty(C) be AEAD_CHACHA20_POLY1305 decryption of ciphertext C €
Sym.C, with empty “associated data", all-zero nonce [0]°%, and 256-bit key K € Sym.K.The
result is either the plaintext byte sequence, or L indicating failure to decrypt.

3.6. Key Agreement and Derivation

KA is a key agreement scheme. It is instantiated as Diffie-Hellman with cofactor multiplication on
Jubjub as follows:

Let],]) i (% and the cofactor hybe as defined in §3.7.

Define KA. Public :=]

Define KA. PublicPrimeOrder := J*

Define KA. SharedSecret := J

Define KA. Private :=]FTH

Define KA. DerivePublic(sk, B): = [sk]B

Define KA. Agree(sk,P) := [hy - sk] P

KDF is a Key Derivation Function. It is instantiated using BLAKE2b,s¢ as follows:
KDF (sharedSecret, epk) := BLAKE2b,s¢("Ztron_SaplingKDF”, kdfinput)
Where

kdfinput = LEBS20SP,5¢(repry(sharedSecret)||LEBS20SP,5¢(repry(epk))

3.7. Jubjub and Red]Jub jub

We use an elliptic curve designed to be efficiently implementable in zk-SNARK circuits, called
“Jubjub”.

Let] be the group of points (u, v) on a twisted Edwards curve Ej over Ey.
The equation is a; - u® + v* = 1 + dj - u® - v¥ mod q;. The parameters are defined as follows.

Let
qy =52435875175126190479447740508185965837690552500527637822603658699938581
184513

Let

17 =65544843968907738099309675635232457297059212658723172813653591623921832
54199

(and 1y are prime.)
q j

Leta; = —1
10240
Letdy = ~ o741 mod qy

The zero point with coordinates (0, 1) is denoted Oy.] has order h; - 7.
Letl; = 256.
Define repr:] -» B '3 such that repry (u,v) = I2LEBSP;5¢ (v + 2255 . i1), where il = u mod 2.

Letabst): B 5 - J U {1} be the left inverse of reprj such that if S is not in the range of reprj , then
absty(S) =1.

Define J ™ as the order-rj subgroup of J. Note that this includes O . For the set of points of order 7;
(which excludes Oy), we write]),

Define J7: = {repry(P):)B"1|P € [},
When computing square roots in Fgin order to decompress a point encoding, the

implementation must not assume that the square root exists, or that the encoding represents a
point on the curve.

LetU((u,v)) = uandletV((w,v)) = v.-

Define Extract j:] — B!merkie by
Extract »(P) = IZLEBSP, _(U(P)).

Red]Jubjub is Schnorr-based signature scheme to the Jubjub curve.
Let define P as the generator of (™.

Define l; = 512

Its associated types are defined as follows:

Redjubjub. Message = BYM

Red]ubjub.Signature _]BY[ceiling(%ﬂ)+Ceiling(bitlength(rl])/s)]

RedJubjub. Public =]

Redjubjub. Private = Frﬂ

RedJubjub. Random = FTJ]

R
DefineRedjubjub. GenPrivate: () — Redjubjub. Private as:

R
Return sk « Frﬂ.

Define RedJubjub. DerivePublic: RedJubjub. Private — Redjubjub. Public by:

RedJubjub. DerivePublic(sk) = [sk]P.

Define RedJubjub. GenRandom: () 5 Redjubjub.Random as:

Choose a byte sequence T uniformly at random on BY[(t#+128)/8]

Return BLAKE2bg,,("Zcash_RedJubjubH",T)
Define ORed]ubjub.random =0 (mOd 7"]])-

Define RedJubjub. RandomizePrivate: RedjJubjub. Random X Redjubjub.Private —
RedJubjub. Private by:

RedJubjub. RandomizePrivate(a, sk) := sk + a (mod 1y).

Define RedJubjub. RandomizePublic: RedJubjub. Random X RedJubjub.Public —
Redjubjub. Public as: RedJubjub. RandomizePublic(a,vk) := vk + [a] P.

Define RedJubjub. Sign:

R
(sk: RedJubjub. Private) X (M:RedJubjub.Message) — Redjubjub.Signature
as:

Choose a byte sequence T uniformly at random on BY[(:#+128)/8],

Letr = BLAKE2bs,,("Zcash_RedJubjubH", T||M).

LetR = [r]P.

LetR = LEBSZOSPIH(reer(R)

Letvk = LEBSZOSPlH(reprB(Red]ubjub. DerivrPublic(sk))

LetS = (r + BLAKE2bs,("Zcash_Red]JubjubH", R||vk||M) - sk) mod 7}
LetS = LEBSZOSPbitlength() (IZLEBSPbitlength()))

Return R||S

Define RedJubjub.Verify:

(vk: RedJubjub. Public) X (M: RedJubjub. Message) X (o: RedJubjub. Signature) —» B

as:

Let R be the first ceiling [/8 bytes of 0, and let S be the remaining ceiling ceiling(bitlength(r;)/
8) bytes.

LetR = abst;(LEOS2BSP, (R), and S = LEOS2IPy;engen(ry) (S)

Letvk = LEBSZOSPlﬂ(reer(vk))

Letc = BLAKE?2bs,,(“Zcash_RedJubjubH”, R||vk||M)

Return 1ifR # L and S < rj and [hy](~[S]P + R + [c]vk) = O}, otherwise 0

3.7. 1. Spend Authorization Signature
SpendAuthSig is instantiated as RedJubjub with key re-randomization.
The generatoris P = FindGrouphashH(T)*("ansh_G", ""M).

3.7.2. Binding Signature

BindingSig is instantiated as RedJubjub, without use of key re-randomization.

The generatoris P = F indGrouphashH(T)*("ansh_cv ,).
3.8. Group Hash into Jubjub

Let GroupHash.Input = BY18] x BYIN and let GroupHash. URSType = BYI64
(The input element with type BY!8! is intended to act as a “personalization” parameter to
distinguish uses of the group hash for different purposes.)

Let URS be the MPC randomness beacon,
URS=" 096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0 ”
Let D: BYM be a 8-byte domain separator, and let M: BY[N be the hash input.

The hash GroupH ash]l],(g (D, M): " is calculated as follows:
let H= BLAKE2s,5c (D,URS ||M)

let P = abst; (LEOS2BSP,5¢ (H)

if P =1, then returnL

letQ = [hy] P

ifQ = Oy thenreturn L, else return Q.

Define first: (BY -» T U {1}) » T U {1} so that first(f) = f(i) where I is the least integer in BY
such that f(i) #1, or L if no such i exists.
Define

g+

FindGrouphash)" " = first(i:BY - GroupHashJ[],(;? (D, M |[iD:]JT*u {LD.

3.9. Commitment Schemes
3.9.1. Note Commitments

10

Let define WindowedPedersenCommit as follows:

WindowedPedersenCommit, (s)
= PedersenHashToPoint(“Zcash_PH",s)

+ [r] FindGrouphash!"" ("Zcash_PH”, “r")

Using WindowedPedersenCommit, the commitment scheme NoteCommit is instantiated as
follows:

NoteCommit, ¢, (gq * ,pkg *, V) :
= WindowedPedersenCommit, ., ([1]°|| I2LEBSPs, (V) || g4 * || Pka *)

NoteCommit. GenTrapdoor () generates the uniform distribution on Frﬂ.

3.9. 2. Value Commitments

In order to support homomorphic property, we define “homomorphic” Pedersen commitments
as follows:

HomomorphicPedersenCommit,.,(D,v)

= [v] FindGrouphash)” (D, “v") + [rcv] FindGrouphash)™" (D, “r")
ValueCommit. GenTrapdoor () generates the uniform distribution on FTH.

Define:
V= FindGrouphashJ](r)* (“Zcash_cv”,“v")
R =F indGrouphash“(r)* (“Zcash_cv”,“r")

Value commitment scheme is instantiated as follows using HomomorphicPedersenCommit:
ValueCommit,., (v) = HomomorphicPedersenCommit,.,(“Zcash_cv”,v).
Which is equivalent to:

ValueCommit,.,(v) = [v]V + [rcv]R

4. Concepts
4. 1. Payment Addresses and Keys

Users who wish to receive payments under this scheme first generate a random spending key sk.

The following diagram depicts the relations between key components. Arrows point from a
component to any other component(s) that can be derived from it. Double lines indicate that the
same component is used in multiple abstractions.

11

Spending Key

nsk

ask

Y

Expended spending key

Proof authorizing key ak ns

(
)
)
Em)

Incoming viewing key ivk

Diversifier

--> pkd

Payment address

For each spending key, there is also a default diversified payment address with a “random-
looking” diversifier. This allows an implementation that does not expose diversified addresses as
a user-visible feature, to use a default address that cannot be distinguished (without knowledge
of the spending key) from one with a random diversifier as above.

Define:

1, if DiversifyHash(d) =1

CheckDiversifier(d) = {d otherwise

DefaultDiversifier(sk) = first(i: B — CheckDicersifier (truncatee_d (PRFse,fpand 3, i))> :J)y {LH
8

For a random spending key, if DefaultDiversifier returns L, then discard the key and repeat
with a different sk.

The composition of shielded payment addresses, incoming viewing keys, full viewing keys, and
spending keys is a cryptographic protocol detail that should not normally be exposed to users.
However, user-visible operations should be provided to obtain a shielded payment address or
incoming viewing key or full viewing key from a spending key.

Users can accept payment from multiple parties with a single shielded payment address and the
fact that these payments are destined to the same payee is not revealed on the block chain, even
to the paying parties. However, if two parties collude to compare a shielded payment address
they can trivially determine they are the same. In the case that a payee wishes to prevent this
they should create a distinct shielded payment address for each payer.

4. 2. Notes

A note represents that a value v is spendable by the recipient who holds the spending key
corresponding to a given shielded payment address.

12

A note is a tuple(d, pky, v, rcm), where:

d: Bl is the diversifier of the recipient’s shielded payment address;

pkg is the diversified transmission key of the recipient’s shielded payment address ;
v is an integer representing the value of the note;

rcm is a random commitment trapdoor which is a random number, indeed.

Where notes are created and send, only a commitment to the above values is disclosed publically,
and added to a data structure called note commitment tree. This allows the value and recipient
be kept private, while the commitment is used by the zero-knowledge proof when the note is
spent, to check that it exists on the block chain.

Let DiversifyHash be as defined in § 3.3.3.
A note commitment on a note(d, pky, v, rcm) is computed as:
ga = DiversifyHash(d)

. 1L
NoteCommitment(n) = {NoteC ommitment,,(reprj(gq), repry(pkq), v), otherwise

NoteCommitment,.,, is instantiated in §3.8.

A nullifier (denoted nf) is derived from nullifier deriving key nk. This computation uses a Pseudo
Random Function.

A note is spent by proving knowledge of (p, ak, nsk) in zero knowledge while publically
disclosing its nullifier nf, allowing nf to be used to prevent double-spending. A spend
authorization signature is also required, in order to demonstrate knowledge of ask.

4.3. Transactions and Treestates

To each transaction there are associated initial treestates. Each treestate consists of a note
commitment tree and a nullifier set.

An anchor is a Merkle tree root of a note commitment tree. It uniquely identifies a note
commitment tree state given the assumed security properties of the Merkle tree’s hash function.
Since the nullifier set is always updated together with the note commitment tree, this also
identifies a particular state of the associated nullifier set.

In a given block chain, treestates are chained as follows:

e The input treestate of the first block is the empty treestate.

e The input treestate of the first transaction of a block is the final treestate of the
immediately preceding block.

e The input treestate of each subsequent transaction in a block is the output treestate of
the immediately preceding transaction.

e The final treestate of a block is the output treestate of its last transaction.

4. 4. Spend Descriptions and Receive Descriptions

Spend descriptions and Receive descriptions are data included in a transaction that describe
Spend transfers and Receive transfers, respectively.

13

A Spend transfer spends a note n°4. Its Spend description includes a Pedersen value commitment
to the value of the note. It is associated with an instance of a Spend proof for which it provides a
zK-SNARK proof.

An Receive transfer creates a note n™". Its Receive description includes a Pedersen value
commitment to the note value. It is associated with an instance of an Output proof (§6.2.5) for
which it provides a zk-SNARK proof.

Each transaction has a sequence of Spend descriptions and a sequence of Receive descriptions.

To ensure balance, we use a homomorphic property of Pedersen commitments that allows them
to be added and subtracted, as elliptic curve points. The result of adding two Pedersen value
commitments, committing to values v; and v,, is a new Pedersen value commitment that commits
to vy + v,. Subtraction works similarly.

Therefore, balance can be enforced by adding all of the value commitments for shielded inputs,
subtracting all of the value commitments for shielded outputs, and proving by use of a binding
signature that the result commits to a value consistent with the net transparent value change.
This approach allows all of the zk-SNARK statements to be independent of each other, potentially
increasing opportunities for precomputation.

A Spend description includes an anchor, which refers to the output treestate of a previous block.
It also reveals a nullifier, which allows detection of double-spends.

4.5. Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate. As valid
transactions are processed, the nullifiers revealed in Spend descriptions are inserted into the
nullifier set associated with the new treestate. Nullifiers are enforced to be unique within a valid
block chain, in order to prevent double-spends.

5. zk—SNARK

Zero-knowledge proving system is a cryptographic protocol that allows proving a particular
statement, dependent on primary and auxiliary inputs, in zero knowledge — that is, without
revealing information about the auxiliary inputs other than that implied by the statement.

5. 1. Zero—Knowledge Proof Model

We use zk-SNARK with the proving system describe in [Groth2016]. These are used for proofs in
spend descriptions and output descriptions.

A preprocessing zk-SNARK instance ZK defines:

« a type of zero-knowledge proving keys, ZK. ProvingKey;

« a type of zero-knowledge verifying keys, ZK. VerifyingKey;

* a type of primary inputs ZK. Primarylnput;

« a type of auxiliary inputs ZK. AuxiliaryInput;

* a type of proofs ZK. Proof;

e atype ZK.SatisfyingInputs S ZK.Primarylnput X ZK.AuxiliaryInput of inputs satisfying
the statement;

« arandomized key pair generation algorithm ZK. Gen : () i ZK.ProvingKey X
ZK.VerifyingKey;

e a proving algorithm ZK. Prove: ZK. ProvingKey X ZK.SatisfyingInputs — ZK.Proof;

« a verifying algorithm ZK.Verify:ZK.VerifyingKey X ZK.Primarylnput X ZK.Proof —

)

14

A proof consists of (1, S g ST, e S). It is computed as described using the pairing
parameters in curve BLS12-381[Bowe2017].

A proof is encoded by concatenating the encodings of its elements; for the BLS12-381 pairing this
is:

384bit i, ||768bit mg||384bit 1
The resulting proof size is 192 bytes.

Zk-SNARK protocol is detailed as follows.
5.2. Construct zk-SNARK

This section will introduce how to construct zk-SNARK in shielded transaction. we will give a
brief overview of how the rules for determining a valid transaction get transformed into
equations that can then be evaluated on a candidate solution without revealing any sensitive
information to the parties verifying the equations.

The main step is:

Computation — Arithmetic Circuit - R1CS —» QAP — zk — SANRK
5.2.1. Generate Arithmetic Circuit

The first step, we convert the original code, which may contain arbitrarily complex statements
and expressions, into a sequence of statements that are of two forms: x = y (where y can be a
variable or a number)and x = y (op) z (where op can be +, —,*,/ and y and z can be variables,
numbers or themselves sub-expressions). Each of these statements is kind of like logic gates in a
circuit.

To take an example, prove that we know the solution to equation:x3 + x + 5 = 35 The result of
the process for the above equation is as follows:

sym_1 = x *
y = sym_1 =
sym2 =y +
~out = sym 2 + 5

X
X
X

5.2.2. RI1CS

Now, we convert this into something called a rank-1 constraint system (R1CS). An R1CSisa
sequence of groups of three vectors (a, b, ¢), and the solution to an R1CS is a vector s, where s
must satisfy the equations.a * s.b — s.c = 0, where. represents the dot product in simpler
terms, if we "zip together" a and s, multiplying the two values in the same positions, and then
take the sum of these products, then do the same to b and s and then c and s, then the third result
equals the product of the first two results. For example, this is a satisfied R1CS:

s = (1,3,35,9,27,30)

a = (5,0,0,0,0,1)
b = (1,0,0,0,0,0)
¢ = (0,0,1,0,0,0)

15

Instead of having just one constraint, we are going to have many constraints: one for each logic
gate. There is a standard way of converting a logic gate into a (a, b, c¢) triple depending on what
the operation is (+, —,* or /) and whether the arguments are variables or numbers. The length of
each vector is equal to the total number of variables in the system, including a dummy variable
~one at the first index representing the number 1, the input variables, a dummy variable ~out
representing the output, and then all of the intermediate variables (sym1 and sym2 above); the
vectors are generally going to be very sparse, only filling in the slots corresponding to the
variables that are affected by some particular logic gate.

First, we’'ll provide the variable mapping that we’ll use:

'~one','x', ~out','sym_1","y','sym_2'

The solution vector will consist of assignments for all of these variables, in that order.

Now, we’ll give the (a, b, ¢) triple for the first gate:

a = [0,1,0,0,0,0]
b = [0,1,0,0,0,0]
¢ = [0,0,0,1,0,0]

You can see that if the solution vector contains 3 in the second position, and 9 in the fourth
position, then regardless of the rest of the contents of the solution vector, the dot product check
will boil down to 3 * 3 = 9, and so it will pass. If the solution vector has -3 in the second
position and 9 in the fourth position, the check will also pass; in fact, if the solution vector has 7
in the second position and 49 in the fourth position then that check will still pass—the purpose
of this first check is to verify the consistency of the inputs and outputs of the first gate only.

Now, let’s go on to the second gate:

a = [0,0,0,1,0,0]
b = [0,1,0,0,0,0]
¢ = [0,0,0,0,1,0]

In a similar style to the first dot product check, here we're checking that sym_1 * x = y.

Now, the third gate:

a = [0,1,0,0,1,0]
b = [1,0,0,0,0,0]
¢ = [0,0,0,0,0,1]

Here, the pattern is somewhat different: it's multiplying the first element in the solution vector
by the second element, then by the fifth element, adding the two results, and checking if the sum
equals the sixth element. Because the first element in the solution vector is always one, this is just
an addition check, checking that the output equals the sum of the two inputs.

Finally, the fourth gate:

a = [5,0,0,0,0,1]
b = [1,0,0,0,0,0]
¢ = [0,0,1,0,0,0]

16

Here, we're evaluating the last check, ~out = sym_2 + 5. The dot product check works by
taking the sixth element in the solution vector, adding five times the first element (reminder: the
first element is 1, so this effectively means adding 5), and checking it against the third element,
which is where we store the output variable.

And there we have our R1CS with four constraints. The witness is simply the assignment to all
the variables, including input, output and internal variables:

[1,3,35,9,27,30]

We can simply compute this by “executing” the code above, starting off with the input variable
assignment x=3, and putting in the values of all the intermediate variables and the output as you
compute them.

The complete R1CS put together is:

5.23. QAP

The next step is taking this R1CS and converting it into QAP form, which implements the exact
same logic except using polynomials instead of dot products. We do this as follows. We go from
four groups of three vectors of length six to six groups of three degree-3 polynomials, where
evaluating the polynomials at each x coordinate represents one of the constraints. That is, if we
evaluate the polynomials at x = 1, then we get our first set of vectors, if we evaluate the
polynomials at x = 2, then we get our second set of vectors, and so on.

We can make this transformation using something called a Lagrange interpolation. The problem
that a Lagrange interpolation solves is this: if you have a set of points (ie. (X, y) coordinate pairs),
then doing a Lagrange interpolation on those points gives you a polynomial that passes through
all of those points. We do this by decomposing the problem: for each x coordinate, we create a
polynomial that has the desired y coordinate at that x coordinate and a y coordinate of 0 at all the
other x coordinates we are interested in, and then to get the final result we add all of the
polynomials together.

17

Now, let’s use Lagrange interpolation to transform our R1CS. What we are going to do is take the
first value out of every a vector, use Lagrange interpolation to make a polynomial out of that
(where evaluating the polynomial ati gets you the first value of the i*" a vector), repeat the
process for the first value of every b and c vector, and then repeat that process for the second
values, the third, values, and so on.

The reason of above transformation is that instead of checking the constraints in the R1CS
individually, we can now check all of the constraints at the same time by doing the dot product
check on the polynomials.

A() = s.a = (1,3,35,9,27,30). (A1 (%), A5 (x), A5 (x), A4 (x), A5 (x), Ag (X))

B(x) = s.b = (1,3,35,9,27,30). (B (x), B, (x), B3(x), B4 (x), Bs(x), B(x))

C(x) = s.c = (1,3,35,9,27,30). (C;(x), C (x), C3(x), C4 (x), Cs (x), Co (x))
A() * B(x) — C(x) = H * Z(x)

Because in this case the dot product check is a series of additions and multiplications of
polynomials, the result is itself going to be a polynomial. If the resulting polynomial, evaluated at
every x coordinate that we used above to represent a logic gate, is equal to zero, then that means
that all of the checks pass; if the resulting polynomial evaluated at least one of the x coordinate
representing a logic gate gives a nonzero value, then that means that the values going into and
out of that logic gate are inconsistent (i.e. the gateisy = x * sym_1 but the provided values
mightbex = 2,sym; = 2,y = 5).

Note that the resulting polynomial does not itself have to be zero, and in fact in most cases won’t
be; it could have any behavior at the points that don’t correspond to any logic gates, as long as the
result is zero at all the points that do correspond to some gate. To check correctness, we don’t
actually evaluate the polynomialt = A.s * B.s — C.s atevery point corresponding to a gate;
instead, we divide t by another polynomial, Z, and check that Z evenly divides t - that is, the
division t / Z leaves no remainder.

Zisdefinedas (x — 1) * (x — 2) * (x — 3) ... - the simplest polynomial that is equal to zero at
all points that correspond to logic gates. It is an elementary fact of algebra that any polynomial
that is equal to zero at all of these points has to be a multiple of this minimal polynomial, and if a
polynomial is a multiple of Z then its evaluation at any of those points will be zero; this
equivalence makes our job much easier.

In order to accelerate polynomial A(x), B(x) and C(x) with FFT, we often define Z =
(x — w9 (x —whH)(x —w?) .., where w is the n*" roots of unity, n is the smallest power of 2 that
is bigger than number of constraints.

5.2.4. zk-SNARK

Based on QAP, we construct a Non-Interactive Zero Knowledge argument for arithmetic
satisfiability where a proof consists of 3 group elements. The proof is easy to verify. The verifier
just needs to compute a number of exponentiations proportional to the statement size and check
a single pairing product equation, which only has 3 pairings. If more details are needed, please
refer to [Groth2016].

6. Shielded Transaction

Flow of building a transaction in a wallet is as following.

18

Generate Spend Description
|
Generate Receive Description
L
i
SpendAuthoritySignature
!
S
—~—
Bingding Signature
=

createShielded Transaction(ShieldedTransferContract) && broadcastTransaction———# |

Flow of verifying a transaction on the chain is as following.

Verify Spend Authority Signature

Verify Spend Proof (Validate Contract)

Verify Output Proof (Validate Contract)
Verify Bingding Signature (Validate Contract)
Check Nullifier (Validate Contract)

Verify others (Validate Contract)

Flow of Executing a transaction on the chain is as following.

19

Process Transparent Input Account Balance
(Execute Contract)

Write Nulifier into Database
(Execute Contract)
[
—
Update Merkle Tree
(Execute Contract)
.
e
Process Transparent Output Account Balance
L (Execute Contract)

6. 1. Trusted Setup

The target of Trusted Setup phase is to generate common reference string(CRS) for partial zk-
SNARK parameters.

We construct CRS based on multi-party computation based on MPC ceremony of Zcash. The
security of trusted setup relies on that one of the participants is honest, that is, discard the toxic
waste after generating corresponding parameters.

6.2. Wallet
6. 2. 1. Create Payment Address

Let PRFe*Pand and PRF°°* be Pseudo Random Functions instantiated in § 3.3.

Let CRH'™¥ be a hash function, instantiated in § 3.3.2.

Let DiversifyHash be as defined in § 3.3.3.

Let SpendAuthSig, instantiated in §3.7.1, be a signature scheme with re-randomizable keys.
Letrepry, J,], and]” be as defined in §3.7, and let FindGroupHashHm* be as defined in §3.3

Define H = FindGroupHash]](r)*(ansh_H,)

[PRFexpend

Define toScalar (x: BY|"™7"|) = LEOS2IP, .., () mod 1

A new spending key sk is generated by choosing a bit sequence uniformly at random fromB'sk,
From this spending key, the spend authorizing key ask, the proof authorizing key nsk, and the
outgoing key ovk are devived as following.

ask = ToScalar (PRESP*(0))
nsk = ToScalar (PRFS‘;;xpand(l))
ovk = ToScalar (PRESP*™(2))

If ask = 0, discard this key and repeat with a new sk.
ak,nk and the incoming viewing key ivk are then derived as:

ak = SpendAuthSig. DerivePublic(ask)

20

nk = [nsk|H
ivk = CRH™* (reprj(ak), reprj(nk))
Ifivk = 0, discard this key and repeat with a new key.

Multiple diversified payment addresses with the same spending authority could be created
efficiently. A group of such addresses shares the same full viewing key and incoming viewing key.

To create a new diversified payment address given an incoming viewing key ivk, repeatedly pick
a diversifier d uniformly at random from B' until g; = DiversifyHash(d) is not L. Then
calculate:

pkq = KA. DerivePublic(ivk, g,)
(d, pky) is the resulting diversified payment address.

In addition, for each spending key, there is also a default diversified payment address with a
“random-looking” diversifier. This allows an implementation that does not expose diversified
addresses as a user-visible feature, to use a default address that cannot be distinguished (without
knowledge of the spending key) from one with a random diversifier as above.

Define:

1, if DiversifyHash(d) =L

CheckDiversifier(d) = {d otherwise

DefaultDiversifier(sk) = first(i:BY — CheckDicersifier (truncatee_d (PRFSe,fpand 3, i))> g My 4R))
8

For a random spending key, if DefaultDiversifier returns L, then discard the key and repeat
with a different sk.

6. 2. 2. Scan Blockchain

Block chain scanning requires only the nk and ivk key components.

Giving the block chain, and (nk, ivk), the following algorithm can be used to obtain each note
send to the corresponding shield payment address, its memo field, and its final status.

Initialize ReceivedSet: P(Note x BYI512) = {}
Initialize SpendSet: P(Note) = {}
Initialize NullifierMap: B'PRFnf — Note to the empty mapping.

For each transaction tx,
For each output description in tx with note position pos,
Attempt to decrypt the transmitted note ciphertext components epk and C*"°
using ivk. If this succeeds giving np:
Extract n and memo: BY[5'2] from np.
Add (n, memo) to ReceivedSet.
Calculate the nullifier nf of n using nk and pos.
Add the mapping nf — n to NullifierMap.
For each Spend description in tx,
Let nf be the nullifier of the Spend description.
If nf is present in NullifierMap, add NullifierMap(nf) to SpentSet.
Return (ReceivedSet, SpentSet).

21

6. 2. 3. Create Spend Proof

Zero-Knowledge proof protocol zk-SNARK is used in shielded transaction.
A valid instance of zxspenq assures that given a primary input:
(rt: [BlMerkle’
cv°: ValueCommit. output,
nf"ld: IBIPRan’
rk: SpendAuthSig. Public)
The prover knows an auxiliary input:
(voucherPath:]B[lMerkle][lMerkleDepth]‘
pos: {0 1 ... 2MerkleDepth _ 1}
da: Hl
pkd: J]'
v (0, ... 2lvalue — 1},
rcv©l: {0, ... 2lscatar — 13,
Cmold:]]
rem®4: {0, ... 2lscatar — 13,
a:{0, ... 2scatar — 13},
ak: SpendAuthSig,
nsk: {0, ... 2!scalar — 1})

Such that the following conditions hold:
Note commitment integrity: cm°'® = NoteCommit,,,oa (reprj(gq), repry(pky), vo'?).

Merkle path validity: Either v°'® = 0; or (voucherpath, pos) is a valid Merkle path of depth
MerkleDepth, from cm, = Extractyw (cm°?) to the anchor t.

Value commitment integrity:
cv®'® = NoteCommit,,o1a (V°'%)

Small order checks: g, and ak are not of small order. i.e. [hj] g4 # O}, [hy] ak # O

Nullifier integrity nf°? = PRE.Y, (p %), where

nk * = repry([nsk]H)

p x= repry(MixingPedersenHash(cm®®, pos))
Spend authority rk = spendAuthSig. RandomizePubnlic(a, ak)
Diversified address integrity pk; = [ivk] g,where
ivk = CRH™* (ak x,nk %)
ak x = reprj(ak).

Given ak,nsk,d,rcm, a, value, rt and voucherPath, we generate the proof. simultaneously, we
generate cv and rk as primary input, used to verify the proof.

6. 2. 4. Signature with Re—randomizable Keys

SpendAuthSig is used to prove knowledge of the spending key authorizing spending of an input
note.

Knowledge of the spending key could have been proven directly in the Spend proof.

22

The verifying key of the signature must be revealed in the Spend description so that the signature
can be checked by validators. To ensure that the verifying key cannot be linked to the shielded
payment address or spending key from which the note was spent, we use a signature scheme
with re-randomizable keys. The Spend statement proves that this verifying key is a re-
randomization of the spend authorization address key ak with a randomizer known to the signer.

The spend authorization signature is over the transaction hash, so that it cannot be replayed in
other transactions.

The hash algorithm that we use is SHA256, that s,
signature. message = Sha256Hash(SHA256Hash(tokenld)||transactionRawData).

For each Spend description, the signer uses a fresh spend authorization randomizer a:

Choose « & SpendAuthSig. GenRandom().

Letrsk = SpendAuthSig. RandomizePrivate(a, ask)

Letrk = SpendAuthSig. derivePublic(rsk)

Generate a proof mzxspenq Of the spend statement with « in the auxiliary input and rk in the
primary input.

5. LetspendAuthSig = SpendAuthSig.Sign,s. (signature.message)

B W =

The resulting spendAuthSig and 7 zxspenq are included in the spend description.

SpendAuthSig is instantiation of a kind of signature with re-randomizable keys Sig, which
defines:

« a type of randomizers Sig. Random;

¢ arandomizer generator Sig. GenRandom: () & Sig. Random;

« a private key randomization algorithm Sig. RandomizePrivate: Sig. Random X
Sig.Private — Sig.Private;

¢ a public key randomization algorithm Sig. RandomizePublic: Sig. Random X Sig. Public —
Sig. Public;

» a distinguished “identity” randomizer Og;g random: Sig- Random

Such that

e for any a: Sig. Random, Sig. RandomizePrivate,: Sig. Private — Sig.Private is injective and
easily invertible;

¢ Sig. RandomizePrivate, Sig.Random is the identity function on Sig. Private.

R

« for any sk: Sig. Private, Sig. RandomizePrivate(a, sk) : a « Sig.GenRandom()
is identically distributed to Sig. GenPrivate().

« for any sk:Sig. Private and a: Sig. Random,

Sig. RandomizePublic(a, Sig. DerivePublic(sk))
= Sig.DerivePublic(Sig. RandomizePrivate(a, sk)).

6. 2. 5. Create Output Proof
A valid instance of Tz gy py: assures that given a primary input :

(cv™": ValueCommit. output,
cmy,:]Blmerkle’

epk:])
The prover knows an auxiliary input:

23

(gd:]]'
pk x4]Blﬂ,
W {0, ... 2vatue — 13,
rcv™”: {0, ... 2lscatar — 13,
Cmold:]]
rem”™: {0, ... 2kscatar — 13,
esk: {0, ... 2scatar — 1})
Such that the following conditions hold:
Note commitment integrity: cm,, = Extract o (NoteCommit, cyunew (g *4, Pk *q, V™)), where

g *a=repry(ga)-

Value commitment integrity: cv™" = NoteCommit,,new (v™")

Small order checks: g, is not of small order. i.e. [hy] ga # O
Ephemeral public key integrity epk = [esk] g4.

Given esk, d,rcm, pk,, value, we generate the proof. simultaneously, we generate cv as primary
input, used to verify the proof.

6. 2. 6. Binding Signature

Spend transfers and Output transfers are used in each transaction. The net value of Spend
transfers minus Output transfers in a transaction is called the balancing value, measured in TRX
as a signed integer v?4/@nee,

vPalance js encoded explicitly in a transaction as the field valueBalance.

A positive balancing value takes value from the shielded value pool and adds it to the transparent

value pool. A negative balancing value does the reverse. As a result, positive v”*%"“is treated like

an input to the transparent value pool, whereas negative v’*%"“¢is treated like an output from

that pool.
Consistency of v?#4" with the value commitments in Spend descriptions and Output
descriptions is enforced by the binding signature. This signature has a dual role in the protocol:

e To prove that the total value spent by Spend transfers, minus that produced by Output
transfers, is consistent with the v?4< field of the transaction;

e To prove that the signer knew the randomness used for the spend and output value
commitments, in order to prevent Output descriptions from being replayed by an
adversary in a different transaction. (A Spend description already cannot be replayed
due to its spend authorization signature.)

Instead of generating a key pair at random, we generate it as a function of the value commitments
in the Spend descriptions and Output descriptions of the transaction, and the balancing value.

Letrepry, J,], and] " be as defined in §3.7.

Let ValueCommit,V and R be as defined in §3.8.

)) T'H -1 TH +1
ValueCommit: ValueCommit. Trapdoor X {— T

} = ValueCommit. Output;

V: J7*is the value base in ValueCommit.

R: J™*is the randomness base in ValueCommit.

24

Suppose that the transaction has:
* n,; Spend descriptions with value commitments cvlo_ l__‘:lll, committing to values vf_ l‘:lll with

old,
randomness revy n.s
g

. 1 oldy ,
* n, transparent inputs, value Vy.ny

« m; Output descriptions with value commitments cv;*'* , committing to values v; "' with
d new; ,
randomness rcv; o, ;
* m, transparent outputs, value v," ervffz ;
« balancing value vPaance,
Obviously, the following equation is satisfied, fee is the transfer fee.
nq ny mq my
oldq old, __ new; new,
Zvi +Zvi —Zvj +Zvj + fee
=1 =1 =1 =1
. 1d
In a correctly constructed transaction, p?@ance =y 371 — 2?1:11 v].newl = Z}":Zl jnewZ -
ld . o .
Y2, v “* + fee, but validators cannot check this directly, because the values are hidden by the
commitments.

Instead, validators calculate the transaction binding verification key as:
n old m new P balance
bvk = (& _ cvi"™®) <>(<r>j=1cvj) valueCommity (v)

(This key is not encoded explicitly in the transaction and must be recalculated.)
The signer knows rcv°@and rcv™”, and so can calculate the corresponding signing key as:

bsk = (B, rev?'®) B (BT, revi'®)
In order to check for implementation faults, the signer should also check that
bvk = BindingSig.DerivePublic(bsk).
BindingSig is instantiated as Redjubjub, without use of key re-randomization.
6.2.7. Note Encryption

Let pk}®": KA. PublicPrimeOrder be the diversified transmission key for the intended
recipient address of a new note, and let g}*"': KA. PublicPrimeOrder be the corresponding
diversified base computed as DiversifyHash(d).

Since note encryption is used only in sending notes to receipt, we may assume that g"®" has
already been calculated and is not L.

Let ovk: BYllovk/8] y {1} be the outgoing viewing key of the shielded payment address from
which the note is being spent, or an outgoing viewing key associated with a [ZIP-32] account, or
1.

Letnp = (d,v,rcm,memo) be the note plaintext, encoded when using.

25

Let cv™" be the value commitment for the new note, and let cm™¢"” be the note commitment.

Then to encrypt:

Choose a uniformly random ephemeral private key esk & KA. Private \ {0} .
letepk = KA.DerivePublic(esk, g7°™")

let P°"be the raw encoding of np

let sharedSecret = KA.Agree(esk,pk}®")

let K" = KDF (sharedSecret, epk)

let C** = Sym. Encrypt e (P€")
ifovk = L:

R R
choose random ock < Sym.K and op « BYl(4+256)/8]

else:

let cv = LEBS 20SPy (repry(cv™™))

letem, = LEBS20SP,s¢(Extract i (cm™™))
let ephemeralKey = LEBS20S Plu (reer (epk))

letock = PRFSSK (cv,cm,, ephemeralKey)

letop = LEBS20SP, ,56(repry(pki®™)|[IZLEBSPys6(esk))
let C°“ = Sym.Encrypt,., (0p)
The resulting transmitted note ciphertext is (epk, C¢", C°*").
6. 2. 8. Note Decryption

The incoming viewing key (ivk) holder could decrypt the ciphertexts to get note, while the
outgoing viewing key (ovk) holder could decrypt to get the note too.

6. 2.8. 1. Note Decryption with ivk

Given ciphertexts (epk, C°™, C°*") from the output description, ivk holder could decrypt €™ to
get note as follows.

let sharedSecret = KA.Agree(ivk,epk)
let K™ = KDFS%'"d (sharedSecret, epk)
let P = Sym. Decrypt enc (C°")

if P = 1, return L

26

extractnp = (d:Bld,v: {0..2% — 1}, rem : BY*2, memo : BY*?)) from Pe™
letrem = LEOS2IP,54(rcm) and g4 = DiversifyHash(d)
ifrem > rjor gq =1, returnl
let pky = KA. DerivePublic(ivk, g4)
letcm', = Extract G (NoteCommit,.cpynew (repry(gq),repry(pkq), v)).
if LEBS20SP,56(cm',, # cmy, return 1, else return np.
6. 2. 8. 2. Note Decryption with ovk

Given ciphertexts (epk, C°"¢, C°*") from the output description, ovk holder could decrypt
C®™ and C°™ to get note as follows.

let ock = PRF2F (cv,cm,, ephemeralKey)
letop = Sym.Decrypt,q, (C°*)
ifop= L1, return L
extract (pk * 4 Bl esk: BY32)) from op
letesk = LEOS2IP,s¢(esk) and pky = abst;(pk * o)
ifesk = rjor pkg & KA. PublicPrimeOrder, return 1
let sharedSecret = KA.Agree(esk,pky)
let K¢ = KDF(sharedSecret, epk)
let P = Sym.Decrypt en (C°™)
if Pe™¢ = 1, return L
extractnp = (d:Bld,v: {0.. 2% — 1}, rem : BY2), memo : BY*?)) from P*™
letrem = LEOS2IP,56(rem) and gq = DiversifyHash(d)
ifrem = rjor gq =1, returnl
if KA. DerivePublic(esk, g3®") # epk, returnL
letcm', = Extract o (NoteCommit,cyynew (repry(gq), repry(pkq), v)).
if LEBS20SP,5¢(cm’,, + cm,y, return L, else return np
6. 2. 9. Broadcast Transaction

After creating transaction, wallet broadcast it to the active peer node.

27

6. 3. Block chain

When receives a shielded transaction, block chain need verify the transaction. After verification,
the transaction could be executed.

6. 3. 1. Verify Transaction

Transaction verification includes the spend authority signature, spend proof, output proof,
binding signature, and nullifier.

6.3.1. 1. Verify Spend Authority Signature

A verifier assures that the signature of SpendAuthSig is verified according to the verification
algorithm defined in §3.7.1.

6. 3. 1. 2. Verify Spend Proof
A verifier assures that given a proof mzxspenq- proof and a primary input spendPrimarylnput:

(rt;]BlMerkle‘
cv°: ValueCommit. output,
nfold: IBglPRan‘
rk: SpendAuthSig. Public)

T zkspend- Verif Yyx (spendPrimarylnput, T zKspend- proof) = True should be checked.
6.3.1.3. Verify Output Proof
A verifier assures that given a proof zxoy¢pye- Proof and a primary input outPrimarylnput:

(cv™": ValueCommit. output,
cmy,: [Blmerkle,
epk:J)
Tzkoutput- Verifypx (outPrimarylnput, T zKoutput- proof) = True should be checked.

6. 3. 1. 4. Verify Binding Signature
The following key is used to verify binding signature.
bvk = (@:;1017{’”) & (@;n:lcv}lew) SvalueCommity (vPaance)
The verify algorithm is instantiated in §3.7.1.
6. 3. 1. 5. Verify Nullifier

The nullifier nf: BlPrFnflof the spend notes is revealed in spend description. It is enforced to be
unique within a valid block chain, in order to prevent double-spends.

A validator checks a nullifier is not in the nullifier set in order to verify the transaction.

6. 3.1.6. Verify others

28

In addition to verify above things, others should also be checked. For instance, transfer contract
fee should be equal to what we pre-define.

6. 3. 2. Execute Transaction
After verification, the transaction could be executed, that is, saved in the block chain.
6.3.2. 1. Process Transparent Input

If the transaction input is from transparent address, we will first adjust the balance of the input
account, that is, subtract the input value from its account.

6. 3. 2. 2. Save CM, Update Tree

In order to make the output transfer valid and shielded, we need save each note commitment. Get
each note commitment from Receive description, and save them into the Merkle tree and update.

6.3.2. 3. Save Nullifier

In order to prevent the spend note from double-spent, we need save the nullifier of each spend
note into nullifier set. Get each nullifier from spend description, and store them into the
database.

6. 3. 2. 4. Process Transparent Output

If one of the transaction output is to transparent address, we will first adjust the balance of the
transparent output account, that is, add the output value to its account.

6. 4. Contract
6.4. 1. User APIs

We support shielded transaction from a single address to multiple addresses.

The spend address and output address can be either transparent or shielded. However, we do not
support that spend address and output address both are transparent, in this case, it is an
ordinary transparent transaction.

We provide interfaces to help users build transactions, or users can build by themselves. If user
choose to build by themselves, it is him that generate spend proofs and output proofs when
needed.

There are 3 conditions if users build transactions by means of APIs we provide.

® transfer from a transparent address to shielded address: users just input the following
fields:
B transparent_from_address: the spend transparent address
B from_amount: the spend value
B shieldedReceives: the output note

® transfer from a shielded address to transparent address: users just input the following
fields:

ask: the spend authorizing key

nsk: the proof authorizing key

ovk: the outgoing viewing key

shieldedSpends: the spend note

transparent _to_address: the output address

29

B to_mount: the output value
® transfer from a shielded address to shielded address: users just input the following fields:
ask: the spend authorizing key
nsk: the proof authorizing key
ovk: the outgoing viewing key
shieldedSpends: the spend note
shieldedReceives: the output notes

In addition, we have defined many rpcs in “src/main/protos/api/api.proto” as following.

rpc CreateShieldedTransaction (PrivateParameters) returns (TransactionExtention) {
I H

rpc GetMerkleTreeVoucherInfo (QutputPointInfo) returns (IncrementalMerkleVoucherInfo) {
}

rpc ScanNoteByIvk (IvkDecryptParameters) returns (DecryptNotes) {
bH

rpc ScanAndMarkNoteByIvk (IvkDecryptAndMarkParameters) returns (DecryptNotesMarked) {
I

rpc ScanNoteByOvk (OvkDecryptParameters) returns (DecryptNotes) {
b5

rpc GetSpendingKey (EmptyMessage) returns (BytesMessage) {
}

rpc GetExpandedSpendingKey (BytesMessage) returns (ExpandedSpendingKeyMessage) {
}

rpc GetAkFromAsk (BytesMessage) returns (BytesMessage) {
}

rpc GetNkFromNsk (BytesMessage) returns (BytesMessage) {
}

rpc GetIncomingViewingKey (ViewingKeyMessage) returns (IncomingViewingKeyMessage) {

}

rpc GetDiversifier (EmptyMessage) returns (DiversifierMessage) {

rpc GetNewShieldedAddress (EmptyMessage) returns (ShieldedAddressInfo) {

rpc GetZenPaymentAddress (IncomingViewingKeyDiversifierMessage) returns (PaymentAddressMessage) {

rpc GetRcm (EmptyMessage) returns (BytesMessage) {

rpc IsSpend (NoteParameters) returns (SpendResult) {

rpc CreateShieldedTransactionWithoutSpendAuthSig (PrivateParametersWithoutAsk) returns (TransactionExtention) {
rpc GetShieldTransactionHash (Transaction) returns (BytesMessage) {

rpc CreateSpendAuthSig (SpendAuthSigParameters) returns (BytesMessage) {

rpc CreateShieldNullifier (NfParameters) returns (BytesMessage) {

The above parameters are defined in “src/main/protos/api/api.proto”.

30

message IvkDecryptAndMarkParameters {
int64 start_block_index = 1;
int64 end_block_index = 2;
bytes ivk = 5;
bytes ak = 3;
bytes nk = 4;

message OvkDecryptParameters {
int64 start_block_index = 1;
int64 end_block_index = 2;
bytes ovk = 3;

message DecryptNotes {
message NoteTx {
Note note = 1;

bytes txid = 2; //transaction id = sha256(transaction.rowdata)
int32 index = 3; //the index of note in receive

}

repeated NoteTx noteTxs = 1;

message DecryptNotesMarked {

message NoteTx {
Note note = 1;
bytes txid = 2; //transaction id = sha256(transaction.rowdata)
int32 index = 3; //the index of note in receive
bool is_spend = 4;

}

repeated NoteTx noteTxs = 1;

message Note {
int64 value = 1;
string payment_address = 2;
bytes rcm = 3; // random 32
bytes memo = 4;

message SpendNote {
Note note = 3;
bytes alpha = 4; // random number for spend authority signature
IncrementalMerkleVoucher voucher = 5;
bytes path = 6; // path for cm from leaf to root in merkle tree
}

message ReceiveNote {

Note note = 1;

}

31

message PrivateParameters {
bytes transparent_from_address = 1;
bytes ask = 2;
bytes nsk = 3;
bytes ovk = 4;
int64 from_amount = 5;
repeated SpendNote shielded_spends = 6;
repeated ReceiveNote shielded_receives = 7;
bytes transparent_to_address = 8;
int64 to_amount = 9;

message PrivateParametersWithoutAsk {
bytes transparent_from_address = 1;
bytes ak = 2;
bytes nsk = 3;
bytes ovk = 4;
int64 from_amount = 5;
repeated SpendNote shielded_spends = 6;
repeated ReceiveNote shielded_receives = 7;
bytes transparent_to_address = 8;
int64 to_amount = 9;

message SpendAuthSigParameters {
bytes ask = 1;
bytes tx_hash = 2;
bytes alpha = 3;

}

message NfParameters {
Note note = 1;
IncrementalMerkleVoucher voucher = 2;
bytes ak = 3;
bytes nk = 4;

message ExpandedSpendingKeyMessage {
bytes ask = 1;
bytes nsk = 2;
bytes ovk = 3;

message ViewingKeyMessage {
bytes ak = 1;
bytes nk = 2;

message IncomingViewingKeyMessage {
bytes ivk = 1;

message DiversifierMessage {
bytes d = 1;

32

message IncomingViewingKeyDiversifierMessage {
IncomingViewingKeyMessage ivk = 1;
DiversifierMessage d = 2;

message PaymentAddressMessage {
DiversifierMessage d = 1;
bytes pkD = 2;
string payment_address = 3;

message ShieldedAddressInfo{
bytes sk = 1;
bytes ask = 2;
bytes nsk = 3;
bytes ovk = 4;
bytes ak = 5
bytes nk = 6;
bytes ivk = 7;
bytes d = 8;
bytes pkD = 9;
string payment_address = 10;

message NoteParameters {
bytes ak = 1;
bytes nk = 2;
Note note = 3;
bytes txid = 4;
int32 index = 5;

message SpendResult {
bool result = 1;
string message = 2;

0.4. 2. Shielded Transfer Contract

Given spend proof or/and output proof, and other necessary information, we can build shielded
transfer contract.

There are 3 contracts we can construct, according to what users provide.

® transfer from a transparent address to shielded address: users need provide the following
fields:
B transparent_from_address: the spend transparent address
B from_amount: the spend value
B spend_description: null
B receive_description: the receive description
B binding_signature: the binding signature
B transparent_to_address: the ouput address, null if no transparent output.
B to_amount: the output amount, 0 if no transparent output.
® transfer from a shielded address to transparent address: users need provide the following
fields:
B transparent_from_address: null
B from_amount: 0
B spend_description: the spend description
B receive_description: null

33

B binding_signature: the binding signature
B transparent_to_address: the ouput address
B to_amount: the output amount
® transfer from a shielded address to shielded address: users just input the following fields:
transparent_from_address: null
from_amount: 0
spend_description: the spend description
receive_description: the receive descriptions
binding_signature: the binding signature
transparent_to_address: null.
to_amount: 0

The shielded contract is as following.

message SpendDescription {
bytes value_commitment = 1;
bytes anchor = 2; // merkle root
bytes nullifier = 3; // used for check double spend
bytes rk = 4; // used for check spend authority signature
bytes zkproof = 5;
bytes spend_authority_signature = 6;

}

message ReceiveDescription {
bytes value_commitment = 1;
bytes note_commitment = 2;
bytes epk = 3; // for Encryption
bytes c_enc = 4; // Encryption for incoming, decrypt it with ivk
bytes c_out = 5; // Encryption for audit, decrypt it with ovk
bytes zkproof = 6;

+

message ShieldedTransferContract {
bytes transparent_from_address = 1; // transparent address
int64 from_amount = 2;
repeated SpendDescription spend_description = 3;
repeated ReceiveDescription receive_description = 4;
bytes binding_signature = 5;
bytes transparent_to_address = 6; // transparent address
int64 to_amount = 7; // the amount to transparent to_address

7. References

[ANWW2013] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-0’Hearn, and Christian
Winnerlein. BLAKEZ2: simpler, smaller, fast as MD5. January 29, 2013.
URL:https://blake2.net/ #sp(visited on 2016-08-14) (T p52, 136).

[Bowe2017] Sean Bowe. ebfull /pairing source code, BLS12-381 - README.md as of commit
e726600. URL: https://github.com/ebfull /pairing/tree/e72660056e00c93d6b0
54dfb08ff34alc67cb799/src/bls12_381 (visited on 2017-07-16) (T p67).

[Groth2016] Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Cryptology
ePrint Archive: Report 2016/260. Last revised May 31, 2016. URL:
https://eprint.iacr.org/2016/260 (visited on 2017-08-03) (T p71, 72, 98, 143).

[Zcash] Sean Bowe, Taylor Hornby, Nathan Wilcox, Zcash Protocol Specification, Sep. 2018,
[online]Available:https://github.com/zcash/zips/blob/master/protocol/protocol.
pdf.

Appendices
A. Demo

34

https://blake2.net/#sp
https://github.com/ebfull/pairing/tree/e72660056e00c93d6b0

In this section, we give 2 demos. One is transaction from transparent address to shielded address,
the other one is from shielded address to shielded address.

A. 1 Transaction from public address to shielded address

A. 1.1 Create shielded transaction

call api: wallet/createshieldedtransaction

POST v http://localhost:8090/wallet/createshieldedtransaction
Params Authorization Headers (9) Body @ Pre-request Script Tests
none form-data x-www-form-urlencoded @ raw binary JSON (application/json) ¥
1-{
2 "transparent_from_address": "415A523B449890854C8FC46@AB6@2DFOF31FE4293F",
3 "from_amount": 10000000000,
4 "ovk": "f2c7e212afd569c89905e0353a7a3373417679ae65b00438a51af4f1d973ccc”,
5+ "shieldedReceives": [{
6~ "note": {
7 "value": 9990000000,
8 "d": "fcoeb90855700861de6639",
9 "pkD": "labfbfé4bc4934aaf7f29b9fead95e5a16e654e63dbed7db@ef@35499d216e19",
10 "rem": "08e3a2ff1101b628147125b786c757b483f1cf7c309f8a647@55bfblca819c@z"
11 }
12 1
13 }
14
Result:

AL R DA D00 YN0 07 3T L S0 07 LD a2 12 PR 28 MG GBS oA OE A L Tecce 3 AL LAE7 a5 32501 2ae3T0PTLE
et iar kS0 E181 Sk 1 5 S TS 5B ok S35 MBS 23 SR o LS P35 e a R 1B IS5k EPOALAESS

"volues": © 13241

I
“hppe.urt™s L pratocol

Fom_doto_bas:
756147 530 00 G52 50l 20 12200 BL MO S 8593 o 322 PG00 20640 30323 75001250070 70D Jamu N 1eH TS0 e TA e F3050Me L ok TAS642E tezio st 131 3492 ch S PebctPGcRall
e 3 Ol T e a1 L8 oS S0 bl e I5elrziene Az2b3TenteSlol 377 1ke
e e e b BT T30 A 05 T W 82 T 4 DdEod 427 AR L LB s)«aua:mmuumsﬁsﬁ.aasc s T
73037 792 0E 3856 e bt 437 P90 T et To08 1oBS0RF 2T o 7 Hidbi S fadied 145 0c M3 BOOBE RS oSBT T SeRA08 CIBFTOS 16870 532501 T FEEAn 72501 AU ST Mec FI3G L FG2S A bdoRul e AGdAsS &7
O cee e D b L3 o1 AL 0 3000 A0 G008 A 4804S0 Lot ol a5t A O500e3 4L eodptsota oG ce o Tolede o L2 TLo T
G168 7ESE T Gt 76537 T2 e a2 T4SAChESbE LSS B8 TG4 b2 2o bl Lot eSaSE01 4 Thceh 207 deodbDoch 37 s Te FE5 e 252 3605 b At 2ehe 3Bt 2o 1e357 20 227 4521 1364120 F ARSI 7IELAT TLcH5 T2 RSO 19 40 AP L2 A5 62 e04e52

A. 1.2 Signature

call api to sign (use the private key of the public address)

api: wallet/gettransactionsign

param:

35

rosT - hipecaho BRI g o
ortn Wewders B Body® ecequestsuipn Tems
Gne Bhemius © S ® by .

i

2
)

1
s
e
7
i

A.

o 'syrxlmuemmmmummmmmmmwm rondota(-contract:({"poraneter tromporent fron oderess” 413 UBEMESACH CARACAISI LIS, inding-signature”

91 4dcRTL10234 10000008, “recelve. description’s ({"volue.comitrent™:
e AL 13 S0 BES St 16T AIABEL O SASRIE 28 - B TDC IR T 0 T BSOS BT 1S5t epeT AR, 3
e RS Teh TR Msummuﬂnmm;«imvmhlmmmhmnn‘nmmﬂm
33007301205 1¢R3167064 1 Loo2AF i 200 1 T2QAGEDC 770 10030 eSS0 70t oot oo TR AT AT AT AT MO8t ST o0 28 o 3B e ST el EACOESSE310 TN A
b3 noteAdUTSEERC DO 85t TS I3 daRT2ToeTE BN A4 ookt 134T0 3OO S SIS D37 RT3 L T NSO OSRY7E0c AR b S MR 241 TSSO ML IO STE G eSS Or A3
Tushccn 02 FRNA330221681 0T e AS ST0CTR 1A
deISIATAGES” , “C_out " 2Sede IGASIGHTO it AT i i et i
£ BB 2cobTo DS uS2Bs22A b 1452951324 T1cod 5023 < Tt fot Pt
T oo T e RO c 55T D MAC S kel 57C"))ty Ly gl et comrotoc oct), oct”)], *ref_block_bytes”:“008d" “re_block_hash®:"6af17087¢70R642", “expirution”
rondoto. e’ SORI 22006187 6o 03808 Vol cebdoni 3 w&-uummmlmumwlmmmrmvwmmmymmu 616374 eecsata
SGaAGaadA eS8 1200 e 206/ RABE0CS 3205403832 3TI2RLa20SRa Bc 1990IB 3080097 LBCA 75163 e of S3RGe 120k TCESGELZCABDTOc 16772
P S CAheAE 107 e SEL7 17081 TSGR TS5 b 238 o 0 RS Bt S S Sc I 7008000050 6 ok 3536k e 9753 RO 413 TS 1S 47 AL Lot kT e ERAER
14T CBe2R322017cabed1a 3770 besorSa1 b7 c 1b174IBSBAT2e 1 2E3SEBRQCED Toaf el aBed 16@3c 4 Tbdkarboc T80T CAA7 ¢S4 T70dscBe054 Gb0204 ToeS1 (3627831003701 128<23b0f I o edESdaf 370 184 B L3 1Idb 163043140 331D 904 4475606308 3cclccI0Y I BScola7EIAZI2 EbaBITheTERLTAAS
oo o 1 e T T2 46 o 3T A O TS AR 321 T B T2 1S e 181150
25 susierens 7077941 26a0s 4o TF IS I BL8937041 7724 2241 175004 0SS 1467520502 ARSI 167 uAOC T oda 1 e o BRI IR2 8620
3 eaisbed it eticer odr 818502 4385 sedcdletope 3w6ci5ha: 60053
utmumv—lmmnldmnnhﬁm:rmkmslﬂmﬂimmnwr 5960 25226061 WS206e1$057: FFORIAZICFEIIS T3 996
DU Boc 204 TR dbedaban

“privatetey”:

“signature”s [
L .
“rom.ata’: {
“contract: [
i
“purasetar’

g
Tt fronatereny 4SSN AL 20
422721 .

eS8 P e oS SO ef 535Gz e Bel FCASEY

e 2ot <ot AL T8 1217 21 7728552032 5o 2826357023 P FS00Z A5G T3 Sed 545044365 5 e 301130 BES0bASLOSS P
50520 chFad? 16754 29072500445 e Toc L0137 et b BT LS04 TP SE LA b oot T b 3T okt A BT DO AT R AL oaShC AT
e v ot TS 1] A Su ML T SEEOE el OO TSt o 7 oS 2T 2T
om0 107502 LS RSN bW 12 T30S P2 ek bk o1 et W TS 487053 5 WEde 21 oH LRSI LE GO 2416 Sou ST TIAIZE
¥
H
1
n
Hhypasene: " . -
) s ettt
1
her stock oytes
“hef Sluck_naan: "BAFLTGTFTERER",
1557822375000,
20
e e 71O 02 6 A A A1 16174 L20coBR1SAL5aS s s oS TG
e e B o SO e T om0 T SISOt 5526 CABETOCL TSR ITE 068 eATOMATc T3 A2 chol 16583a1 45 B
64155 720552052363 S 62023 507 Rk 337402 20, 55 356 1 0Nt AT L1011 uE g LT AN S b A2 NS TAO SIS T
76646 51 A7

PhoaITATF,
wrs-wmmwa-::;wmm:mw—mmm;nwnx anwmuwh-sxzwuanmmkz&umumquwml|m1wmlwm LN e VST 2 ok e T Sonlcom S TS
amus 1
e Lo 0 L 0 01 SO L AL AT O S0 SLUA 0 3 0 DL GTEARN e OEOBEN ot T o 31T
o e o o2 MBS a2 S A2 o525 11241 oot e 6L eSS IS el e el 2 ISGE oSeatls
0961671071905 0F 306D BT 0587
otk e e T

1. 3 Broadcast Transaction

api: wallet/broadcasttransaction

param:

— [-

posT
Conkim Code Comearea)
Srne Srmam o @by [
D SO NISSSASOS LTSGR EITEIIANG” o, ok ("Conkock™[{"parsmetar” {"vali: "Ko_owcunt " 100000880, “birding.4igratiee”:
1 spemdduscript ion’ (1" value_come trant - GAS0452025A35¢ ST RG0SR D16ATI ST TGk 22 onchar 2T FTOGRZOAFIC 10K Lok eBoALTOBE B IZAZ7 A e o0 ru L FLar
A Tehec O NICANRT 1377571 oroS DM Lsboss S TTee
e
72312417 JcoMATCONR31 658250330 Broc o220 AL AIRT2"spend. Uthor sy (Gt e T30S 021562 A 03T DAL E310557 1870053227 G2 AOAD A2 LA L0037 d oS8 285437 o 7152501 Bosabone - raprcot:("values
L YA TTEA003 G2 STR3 122013 BTN 1L SGT3R Lo SeehaISEbC S OG0 o3RG B 308 23T BACCe 30 A2 4L L0023 G Tea 3044 ok 30D 7
FbSecade 1023 1S L1 SR a7 AT 6 TS 05033 SE AR SIONSTAFST1) 3, foa” 10000000, cucaive.duscr Lot en [(vl : ate_comttsent”
TS e oo P e 1 anc”
% Aecsato
mmmrwwwumkw Flo21ce mmxzmxmmummuumwnwnﬂmum:mmg»mmuwmmk:vxmwwewnmuwmmmummkm:uwwwmlmmumz)rmmzmmumm:mmwcm
GG AT e SRS ede 10 04707 ONBOCE T oA Soabtedao e 5300531 050418158, 77fe7cton7 B55adosase
e e e AR A AT Ot T8 012
" 717581 TRl <esarssan e S AL O U S A S ket vl
05 1966t R ronsgarent_t 28 “i* w').'tm_wl‘ L eazi ot " type” " n
gttt e e e AL i
QoRA AU 0 e 0T WA o 37T L 2 70T 2010 e A 4S4 2R ST2A 3607257012910 Lo 19N 5543552 s 30719142 02392 02 A 20 AT o2 207 04850827
oot reitiee ettt et o e et R e s et e e e
AN RS
aChbe ¥R 200c S4BT 22 1RO ARAGA L 640w OB 07322 2D 131D 1o 2634 B D302 EAC 30T oA FERDFLRCC23FAIEINGST o STaF 1531 0269 AN 36 R 76IS 2T oS SARCSadCSE
S0 117N k<S043 SHORF L2 SR 7SI BCEOAIT e awlmzmmxmﬂwdsu-mmnumi-mnuwa 38700853 1028 Sarabat e bie7)
AN 107 3TN o1 7NN e 2000 e 2 S 0576V SN ot SN abTIReTaT26Tche woric S 414 eSS AR s 2128 A AR AN AT RSS2 S0
AL BASSOS Tt DS 215 e oG TSSO 9L ebefoc 74ET OATIRT mT SO A T TOES 20 i f52e 7S ARG 3N 2672 I
DT 3 LIS TSRO E2A 1350272 300 5100 30l Py o oot cana712 1T Aame TS BOADESCESe1 0¢1 A IR ORI 30 e ca SIS St TR
e T B e e AU L 12k 51 2T 20 etk e A DR S 00
S OOhag5To AR 2264 CLOBT TG0 o377 LOGA T332 24 67300 DTS4 AT R3NS3 D720 ST o acecb A TIDNI (M32T2US T 17561 35553 SaisobARR
91951 4606 4919 123662912668652 600 SHINEDa F Sd 2 it 73?& 4F5124 dbesdeffc
520 . ot TR b g et
11383225 A
2
—

A.

Pretty Raw Preview Auto ¥ puy

1 {"result": true}

2

2 Transaction from shielded address to shielded address

36

A. 2.1 Get voucher

Call api getmerkletreevoucherinfo to get the voucher of the shield address, this info will be used
when create shielded transaction

param:

s el .
e 023, bl

A. 2.2 Create transaction

call api: wallet/createshieldedtransaction

PosT v Mg AG st ramcin

Boayw Frereguen sorgs

o @ by

*anieisespents: [
i

i,
BeGRASSTIGI HETD",

s 1609,
B3 F1101 21471250 TBc T STTAB I 7 MG EabA RS b o] coB 13z

iT3

H:upsss

t

00,
BB TRA1GeIET3",
LD EAbC33400r 71 3 S99 SESIGRES 4e6 el Tk (RSATRTIER1S"

3 “rens B2

6250423001
06T

37

mQ

rcacaa ;
FSTZATIAT TS §
st v —
o -
w
18
E
2
z.
n:
u
=
H
7 reemsSAc
Mzmmrm-mmmmlmmrmvmmm HoZ coReeiatabSchcSiA7 ook zacbibchebeIAC nmuwmmmwmmmtuum«txonelmmlmnms\m«smmmmmvmmwmmu
e e e A i e e Fantrersn
A RTARS Sk SASEoLROA T3040 o707 0ETEA AR B eeEC RTINS0 o Rus T4 AT BRI czer
oot TG 4 T e o 5 Gl e ST e RIS
u arass Bes7ebderman .
= P
» ealugs": “HEMMCGAGEI NIl 2a
e LcaribamsTSde coariackaTIscre”
n)
2 .
B {
u e e
» (76013750537 AR50 1,
* BG5S S22 s
k4 e GAMALIDSHBET o €TEYTsasa L0 cscaroresns B eG4 A3 B9 A 21505 07T CS 261k e T SITHRCSTCRT
e reiazrrassamar iasriss 2SR TR ATIES e e et T e S M LSt
27ekc e Sabaisa 057 ctdbann IR SSEcad ST oA ZT ST S203S T3S
5473 H3cEd aricaz SEAGSSoed B SRR o AN 706 26051 b 151
u z
»-
& 5
a '
& b
b)
“
b RT—— L
© %
b3 Hiyen: “SHeldadteons erCantrace
W)
o
“ 5
E “comecttuarisels”,
2 1557127115000,
5
“ L
B ot hex's BondnSs 72N asecT IS A ook 0N L2 00T T AT PO A6 A4 SA T MOS0 e 737412 Lo 41377 T L2401 3067 oo O Soe S Ak ST IO S2
PR e e TN e T e
b T e eSS STt 2L ST A onahcorOrees e T eI
Gokbec o207 2con100675000 sz e i 2% e
mmanm:mvumummmmmmmm:uvmmmsnwmmm»«emzmnmxmummwmmmlmmuwmm Pt G Mmlmmmmsmmm
DTRG0 Ao A SRR 5235 G0 TOZS39S3orc S 0G3E o AL 0 0570 L0aaS 80T o b con 7T T EoSheo et o L1 A 2o a1 20T IS GBSO BESETSeSaTOt1137 G T B T
mummlml‘slnmmmmniﬁukﬂzmwﬂaw«nsvuﬁs»ﬂmumm<kwmuvmmmm O DS PEDOTTSe3 trALE muks vt 105 AT IS S s 32O SRS
RAASEETe7 02 R D 18 bbb Tobodd ST 4122 sl T dcak 3530000785 304500006 7 AANDA37261600
ook Zecn T STIGE36, Mok D062 N0 W1 21 6| AR SNTA A2 s ww!lf:wwmuiv«k“u a1 o 15768 e TS0
SSAAFIES1 el a2 sccaiot e Sttt 500 rsarsoke Foucn
AR a40ee20Md RS AN AT 41 L Ae S3ToT GBS U7 At BRGS0 Sl S0 Sk kT SN B TSNS S wmxmmunmmvmmmsmwuummmmu ket SeSRE L2 L et P32E50
7 e e STt B s s 22 oSS st GG (rcTszce T Lo 2 D
oo
RIS BT RS nssm-«mmmmcmummmammmms;::smmmvm mr Saarsaie i aa7eec360 ey
TSzt wummuwnmvmsun«mmaaurmm««-«mxmmu«mmmmmsmnmmmmmnmmn«nwmmmmsm.mvu:m:mum scatse e i
taechts s Ao e A B AR1 RoRAC SO e A RIS EBARTS P LS 342001350 0SB U2 T 01510 30 LB SA7O07AC252 00512002127 e ARSI

O TEaSan NS sSSP Ear AR TH S SRS EDece PR BRSO TESO SEORSRT 2oLt A0 3o AR 501 PSS oSO oSS SR S 029024 LR AABNED oG T SBET AR e T S TIRERE G OCIATS

A. 2.3 Broadcast Transaction
There is no need to sign this transaction.
call api: wallet/broadcasttransaction

param:

L —— 2N -
| R O Gy L W O g o o G

omon,
n ot)

5 “spand_autrarity_sigoture™

e “skpreaf*: {

w “alums”; 071691 1500066755c £25900bc12472I0CABMOCT0CI 24772 INS a5

o by . Bevney

iR 410801 2 F25501
J A0 enDLabA A LA et AR TO IS5l 1S SRR M ol LS AT
¥

» 1.
2 Thee:
z- eive duseripptens €
ne
u e 3o AR BT S
) TSI BALTSE TS5
= A262004c2520323C9810"
z 29001 6347291613/ 335 abuboTRER B/ GAoESLEH 0TI CEL TS0 702585300 050602009 00 RIST 208D 71 s
e 2STESST B AL 23080 TuSEADC I3 AU 3BT BT cEOEt 5 4550
2SR TS 19: 7T <A 16754302 e 58T 792 2 a1 3271 562 131 SHOAA S22 7 136230 DSR2 FAGMRGS 320 RN ISATIIS A L
3 7eT A3 7261 ZodeTocI726¢ k3¢ BI04 156
S TOTSBONDF 7 iR ROAN < LG 337 beoani2 e 7oe (oo 1508 cesecoc e A2 YT 90 42 deechc 4 r;
= Lot 800301 221 14m2947 10657 e eI 5 1 070000339 8
=,
=» LA ACHEOE60 IR 3A30301027503 306212531120 08 chAANZ? 5304 BB 153 2 et
R et T e Tt btk
3)
2 b
n- ¢
) “eslue_commitrant: “a3obbHIe)Se2e S0 T ecdocbioted BT e c AR FIFFRCMBLbZE'
= ottt "SI feaTa e RS e e SIS 1 e A A ISATSOE 1,
» agic: .
= “cene:
BB RIS 7CaT 2T B2 95446304 362027 B P 73106081074 S 128 C7A2S 102 2T 2T 3010 Heo ST eS8 P56 2T S L A2 ESOSTS Seddar B
vm.msﬂau«iumkmmwEwzmls-stmul-yw-k:.:nv&wMﬁmﬂaﬂmwts&'lsmau-uu-sr-m-:h-m-sw-mm-lf:sm&smmﬂmmanwwiﬁasnwwnwa&stmnsimmmwu
E e e .
».
- 580 TR B 151464 BS0echb Sc23Sh4 S 13654 STIA 2S4BT S 1 20F 212
raBRe 26 130344 TOE A0SR0 e a2 e 41 eSO RARA hac DocT438e5
a
b
)
“
5 oo, conrorotacal, .
© 1
@ “lypes “Srteldesrnsrorcantract”
s 3
a 1
» el lock byies”: 557"
= ref Slark 't *ciafecded 85",
=2 “erpiration”: 1557EZTLLENG,
s “tiresta =
EREEN
S o saka b RO 3 e S T RS S TS TS O 20635 2 P07 2 4G 3D 0 B oA GSEA A 2B ot 005 36 775 167 4L 2ch 1410 MR 754 T 082021567 A B0 1A d50e A2 65301 22 OB COCIS2520
T8 SA TR A0 PA TS0 S 1A 55 7210 ok 5 0605057
b e A 743 DS O 2t ot 100 01 1 0CA 1o 53¢ 1] 34130 e b ﬂ#msrzwmurmwmmmamnmum
BB T a2 TS 1L L4 27 LT ur oA s 231 e L kM) 25T 83 ST A 30 B MGG =3P ST 5305020 ST A 31241600 228 CEhOIEAN T3 26 LA
uuaahs»fgmmggggwmma;gnmmzmmumsmummﬂwmmwwu Pswl[f_:l‘j;gmgmg:_;ﬁwﬂ:bﬂ-ﬁ-mﬁﬁhag’!mas‘ﬁwu. L@gsmwmmwmm%sﬁw%ymhm;ﬁg
v e
o2 e
[

38

	1. Overview
	2. Notation
	3. Cryptographic Primitives
	3.1. Encoding rules
	3.2. Constants
	3.3. Hash Functions
	3.3.1. BLAKE2 Hash Function
	3.3.2. CRHivk Hash Function
	3.3.3. DiversifyHash Function
	3.3.4. Pedersen Hash Function
	3.3.5. Mixing Pedersen Hash Function
	3.4. Pseudo Random Function
	3.5. Authenticated One-Time Symmetric Encryption
	3.6. Key Agreement and Derivation
	3.7. Jubjub and RedJubjub
	3.7.1. Spend Authorization Signature
	3.7.2. Binding Signature
	3.8. Group Hash into Jubjub
	3.9. Commitment Schemes
	3.9.1. Note Commitments
	3.9.2. Value Commitments
	4. Concepts
	4.1. Payment Addresses and Keys
	4.2. Notes
	4.3. Transactions and Treestates
	4.4. Spend Descriptions and Receive Descriptions
	4.5. Nullifier Sets
	5. zk-SNARK
	5.1. Zero-Knowledge Proof Model
	5.2. Construct zk-SNARK
	5.2.1. Generate Arithmetic Circuit
	5.2.2. R1CS
	5.2.3. QAP
	5.2.4. zk-SNARK
	6. Shielded Transaction
	6.1. Trusted Setup
	6.2. Wallet
	6.2.1. Create Payment Address
	6.2.2. Scan Blockchain
	6.2.3. Create Spend Proof
	6.2.4. Signature with Re-randomizable Keys
	6.2.5. Create Output Proof
	6.2.6. Binding Signature
	6.2.7. Note Encryption
	6.2.8. Note Decryption
	6.2.8.1. Note Decryption with ivk
	6.2.8.2. Note Decryption with ovk
	6.2.9. Broadcast Transaction
	6.3. Block chain
	6.3.1. Verify Transaction
	6.3.1.1. Verify Spend Authority Signature
	6.3.1.2. Verify Spend Proof
	6.3.1.3. Verify Output Proof
	6.3.1.4. Verify Binding Signature
	6.3.1.5. Verify Nullifier
	6.3.1.6. Verify others
	6.3.2. Execute Transaction
	6.3.2.1. Process Transparent Input
	6.3.2.2. Save CM, Update Tree
	6.3.2.3. Save Nullifier
	6.3.2.4. Process Transparent Output
	6.4. Contract
	6.4.1. User APIs
	6.4.2. Shielded Transfer Contract
	7. References
	Appendices
	A. Demo
	A.1 Transaction from public address to shielded address
	A.1.1 Create shielded transaction
	A.1.2 Signature
	A.1.3 Broadcast Transaction
	A.2 Transaction from shielded address to shielded address
	A.2.1 Get voucher
	A.2.2 Create transaction
	A.2.3 Broadcast Transaction

