

Shielded Transaction Protocol

 1

CONTENTS

1. OVERVIEW ... 1

2. NOTATION.. 2

3. CRYPTOGRAPHIC PRIMITIVES .. 4

3.1. ENCODING RULES .. 4

3.2. CONSTANTS ... 5

3.3. HASH FUNCTIONS .. 5

3.3.1. BLAKE2 HASH FUNCTION .. 5

3.3.2. CRHIVK HASH FUNCTION ... 5

3.3.3. DIVERSIFYHASH FUNCTION ... 5

3.3.4. PEDERSEN HASH FUNCTION .. 6

3.3.5. MIXING PEDERSEN HASH FUNCTION .. 6

3.4. PSEUDO RANDOM FUNCTION .. 7

3.5. AUTHENTICATED ONE-TIME SYMMETRIC ENCRYPTION ... 7

3.6. KEY AGREEMENT AND DERIVATION ... 7

3.7. JUBJUB AND REDJUBJUB ... 8

3.7.1. SPEND AUTHORIZATION SIGNATURE .. 10

3.7.2. BINDING SIGNATURE .. 10

3.8. GROUP HASH INTO JUBJUB .. 10

3.9. COMMITMENT SCHEMES .. 10

3.9.1. NOTE COMMITMENTS .. 10

3.9.2. VALUE COMMITMENTS .. 11

4. CONCEPTS ... 11

4.1. PAYMENT ADDRESSES AND KEYS .. 11

4.2. NOTES.. 12

4.3. TRANSACTIONS AND TREESTATES ... 13

4.4. SPEND DESCRIPTIONS AND RECEIVE DESCRIPTIONS ... 13

4.5. NULLIFIER SETS ... 14

5. ZK-SNARK .. 14

5.1. ZERO-KNOWLEDGE PROOF MODEL .. 14

5.2. CONSTRUCT ZK-SNARK .. 15

5.2.1. GENERATE ARITHMETIC CIRCUIT ... 15

5.2.2. R1CS ... 15

5.2.3. QAP ... 17

5.2.4. ZK-SNARK .. 18

6. SHIELDED TRANSACTION... 18

6.1. TRUSTED SETUP .. 20

6.2. WALLET .. 20

6.2.1. CREATE PAYMENT ADDRESS .. 20

 2

6.2.2. SCAN BLOCKCHAIN .. 21

6.2.3. CREATE SPEND PROOF... 22

6.2.4. SIGNATURE WITH RE-RANDOMIZABLE KEYS ... 22

6.2.5. CREATE OUTPUT PROOF ... 23

6.2.6. BINDING SIGNATURE .. 24

6.2.7. NOTE ENCRYPTION .. 25

6.2.8. NOTE DECRYPTION .. 26

6.2.8.1. NOTE DECRYPTION WITH IVK ... 26

6.2.8.2. NOTE DECRYPTION WITH OVK .. 27

6.2.9. BROADCAST TRANSACTION .. 27

6.3. BLOCK CHAIN .. 28

6.3.1. VERIFY TRANSACTION ... 28

6.3.1.1. VERIFY SPEND AUTHORITY SIGNATURE .. 28

6.3.1.2. VERIFY SPEND PROOF .. 28

6.3.1.3. VERIFY OUTPUT PROOF... 28

6.3.1.4. VERIFY BINDING SIGNATURE ... 28

6.3.1.5. VERIFY NULLIFIER ... 28

6.3.1.6. VERIFY OTHERS ... 28

6.3.2. EXECUTE TRANSACTION ... 29

6.3.2.1. PROCESS TRANSPARENT INPUT ... 29

6.3.2.2. SAVE CM, UPDATE TREE .. 29

6.3.2.3. SAVE NULLIFIER .. 29

6.3.2.4. PROCESS TRANSPARENT OUTPUT... 29

6.4. CONTRACT .. 29

6.4.1. USER APIS .. 29

6.4.2. SHIELDED TRANSFER CONTRACT.. 33

7. REFERENCES ... 34

APPENDICES .. 34

A. DEMO ... 34
A.1 TRANSACTION FROM PUBLIC ADDRESS TO SHIELDED ADDRESS ... 35
A.1.1 CREATE SHIELDED TRANSACTION... 35
A.1.2 SIGNATURE .. 35
A.1.3 BROADCAST TRANSACTION ... 36
A.2 TRANSACTION FROM SHIELDED ADDRESS TO SHIELDED ADDRESS .. 36
A.2.1 GET VOUCHER ... 37
A.2.2 CREATE TRANSACTION.. 37
A.2.3 BROADCAST TRANSACTION ... 38

 1

1. Overview

TRONZ team from TRON community has implemented shielded transaction. This specification is
intended to give a concise summary of the protocol.

Value in transaction is either transparent or shielded. Shielded value is carried by notes, which
specify an amount and (indirectly) a shielded payment address, which is a destination to which
notes can be sent. Note is associated with a private key named spending key that can be used to
spend notes sent to the address.

To each note there is cryptographically associated a note commitment. Once the transaction
creating the note has been mined, it is associated with a fixed note position in MerkleTree that is
a tree of note commitments, and with a nullifier unique to that note. Computing the nullifier
requires the nullifier deriving key. It is infeasible to correlate the note commitment or note
position with the corresponding nullifier without knowledge of at least this key. An unspent valid
note, at a given point on the block chain, is one for which the note commitment has been
publically revealed on the block chain prior to that point, but the nullifier has not.

A transaction can contain transparent inputs and outputs. It also includes Spend descriptions,
and Receive descriptions. Together these describe shielded transfers which take in shielded input
notes, and/or produce shielded output notes. We support one input, and two outputs at
most(Technically, we could support many inputs and outputs). Each shielded input or shielded
output has its own description. It is also possible for value to be transferred between the trans-
parent and shielded domains.

The nullifiers of the input notes are revealed (preventing them from double-spending) and the
commitments of the output notes are revealed (allowing them to be spent in future). A
transaction also includes computationally sound zk-SNARK proofs and signatures, which prove
that all of the following hold except with insignificant probability:

For shielded input,
• there is a revealed value commitment to the same value as the input note;
• if the value is non-zero, some revealed note commitment exists for this note;
• the prover knew the proof authorizing key of the note;
• the nullifier and note commitment are computed correctly.
and for each shielded output,
• there is a revealed value commitment to the same value as the output note;
• the note commitment is computed correctly;
• it is infeasible to cause the nullifier of the output note to collide with the nullifier of any other
note.

In addition, various measures are used to ensure that the transaction cannot be modified by a
party not authorized to do so.

Outside the zk-SNARK, it is checked that the nullifiers for the input notes had not already been
revealed (i.e. they had not already been spent).

A shielded payment address includes a transmission key for a key-private asymmetric encryption
scheme. “Key- private” means that ciphertexts do not reveal information about which key they
were encrypted to, except to a holder of the corresponding private key, which in this context is
called the receiving key. This facility is used to communicate encrypted output notes on the block
chain to their intended recipient, who can use the receiving key to scan the block chain for notes
addressed to them and then decrypt those notes.

For each spending key there is a full viewing key that allows recognizing both incoming and
outgoing notes without having spend authority. This is implemented by an additional ciphertext
in each Output description.

 2

The basis of the privacy properties is that when a note is spent, the spender only proves that
some commitment for it had been revealed, without revealing which one. This implies that a
spent note cannot be linked to the transaction in which it was created. That is, from an
adversary’s point of view the set of possibilities for a given note input to a transaction—its note
traceability set— includes all previous notes that the adversary does not control or know to have
been spent.

The nullifiers are necessary to prevent double-spending: each note on the block chain only has
one valid nullifier, and so attempting to spend a note twice would reveal the nullifier twice, which
would cause the second transaction to be rejected.

2. Notation

𝔹 means the type of bit values, i.e. {0, 1}. 𝔹 Y means the type of byte values, i.e. {0 ... 255}. ℕ
means the type of nonnegative integers. ℕ+ means the type of positive integers. ℤ means the type
of integers. ℚ means the type of rationals.

𝑥: 𝑇 is used to specify that x has type T. A cartesian product type is denoted by S × T, and a
function type by 𝑆 → 𝑇 . An argument to a function can determine other argument or result
types.

The type of a randomized algorithm is denoted by 𝑆
𝑅
→

𝑇. The domain of a randomized algorithm

may be (), indicating that it requires no arguments. Given 𝑓: 𝑆
𝑅
→

𝑇 and 𝑠: 𝑆, sampling a variable

𝑥: 𝑇 from the output of 𝑓 applied to 𝑠 is denoted by 𝑥
𝑅
←

𝑓 (𝑠).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if 𝑥: 𝑋,
𝑦 ∶ 𝑌 , and 𝑓 ∶ 𝑋 × 𝑌 → 𝑍, then an invocation of 𝑓(𝑥, 𝑦) can also be written 𝑓𝑥(𝑦).

{𝑥: 𝑇 | 𝑝𝑥} means the subset of x from T for which px (a Boolean expression depending on x) holds.

T ⊆ U indicates that T is an inclusive subset or subtype of U. S ∪ T means the set union of S and T.

S∩T means the set intersection of S and T, i.e. {𝑥: 𝑆|𝑥 ∈ 𝑇}.

S \ T means the set difference obtained by removing elements in T from S, i.e. {𝑥: 𝑆 | 𝑥 ∉ 𝑇 }.

𝑥: 𝑇 ↦ 𝑒𝑥 :𝑈 means the function of type T → U mapping formal parameter x to ex (an expression

depending on x). The types T and U are always explicit.

𝑥: 𝑇 ↦≠𝑦 𝑒𝑥:𝑈 means 𝑥: 𝑇 ↦ 𝑒𝑥 :𝑈 ∪ {𝑦}restricted to the domain{𝑥: T|𝑒𝑥 ≠ 𝑦}and range U.

𝒫(𝑇) means the powerset of T.

𝑇[ℓ] where T is a type and ℓ is an integer, means the type of sequences of length ℓ with elements
in T. For example, 𝔹[ℓ] means the set of sequences of ℓ bits, and 𝔹𝕐[𝑘] means the set of sequences
of k bytes.

𝔹𝕐[ℕ]means the type of byte sequences of arbitrary length.

length(S) means the length of number of elements in S.

truncatek (S) means the sequence formed from the first k elements of S.

0x followed by a string of monospace hexadecimal digits means the corresponding integer
converted from hexadecimal. [0𝑥00]𝑙

means the sequence of 𝑙 zero bytes.

 3

“...” means the given string represented as a sequence of bytes in US-ASCII.

[0]𝑙

means the sequence of 𝑙 zero bits. [1]𝑙

means the sequence of 𝑙 one bits.

{𝑎 . . . 𝑏} means the set or type of integers from 𝑎 through 𝑏 inclusive.

[𝑓 (𝑥) 𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 𝑎 𝑢𝑝 𝑡𝑜 𝑏] means the sequence formed by evaluating 𝑓 on each integer from 𝑎
to 𝑏 inclusive, in ascending order. Similarly, [𝑓 (𝑥) 𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 𝑎 𝑑𝑜𝑤𝑛 𝑡𝑜 𝑏] means the sequence
formed by evaluating 𝑓 on each integer from 𝑎 to 𝑏 inclusive, in descending order.

a || b means the concatenation of sequences a then b.

concatB(S) means the sequence of bits obtained by concatenating the elements of S viewed as bit

sequences. If the elements of S are byte sequences, they are converted to bit sequences with the
most significant bit of each byte first.

sorted(S) means the sequence formed by sorting the elements of S.

𝔽𝑛 means the finite field with n elements, and 𝔽𝑛
∗

means its group under multiplication (which

excludes 0).

Where there is a need to make the distinction, we denote the unique representative of 𝑎: 𝔽𝑛 in the
range {0 ...n − 1} (or the unique representative of 𝑎: 𝔽𝑛

∗ in the range {1 ... n − 1}) as a mod n.
Conversely, we denote the element of 𝔽𝑛 corresponding to an integer 𝑘: ℤ 𝑎𝑠 𝑘 (𝑚𝑜𝑑 𝑛). We also

use the latter notation in the context of an equality k = k′ (mod n) as shorthand for k mod n=k′

mod n, and similarly k≠k′ (mod n) as shorthand for k mod n≠k′ mod n. (When referring to
constants such as 0 and 1 it is usually not necessary to make the distinction between field
elements and their representatives, since the meaning is normally clear from context.)

𝔽𝑛[𝑥]means the ring of polynomials over x with coefficients in 𝔽𝑛.

a + b means the sum of a and b. This may refer to addition of integers, rationals, finite field
elements, or group elements according to context.

−a means the value of the appropriate integer, rational, finite field, or group type such that (−a) +
a = 0 (or when a is an element of a group G, (−a) + a = OG), and a − b means a + (−b).

a · b means the product of multiplying a and b. This may refer to multiplication of integers,
rationals, or finite field elements according to context (this notation is not used for group
elements).

a/b, also written
𝑎

𝑏

, means the value of the appropriate integer, rational, or finite field type such

that (a/b) · b = a.

a mod q, for 𝑎:ℕ and 𝑞:ℕ+, means the remainder on dividing a by q. (This usage does not conflict
with the notation above for the unique representative of a field element.)

a ⊕ b means the bitwise-exclusive-or of a and b, and 𝑎 & 𝑏 means the bitwise-and of a and b.
These are defined on integers or (equal-length) bit sequences according to context.

∑ 𝑎𝑖
𝑁
𝑖=1 means the sum of a1..N . ∏ 𝑎𝑖

𝑁
𝑖=1 means the product of a1..N . ⊕𝑖=1

𝑁 means the bitwise

exclusive-or of a1..N . When N = 0 these yield the appropriate neutral element, i.e. ∑ 𝑎𝑖
0
𝑖=1 = 0,

∏ 𝑎𝑖
0
𝑖=1 = 1, and ⊕𝑖=1

𝑁 = 0 or the all-zero bit sequence of the appropriate length given by the type
of a.

 4

√𝑎, where 𝑎: 𝔽𝑞 means the positive (i.e. in the range {0…
𝑞−1

2
}) square root of a in 𝔽𝑞. It is only used

in cases where the square root must exist.

b?x:y means x when b = 1, or y when b = 0.

ab, for a: an integer or finite field element and 𝑏: ℤ, means the result of raising a to the exponent b,
i.e.

𝑎𝑏 ∶=

{

 ∏𝑎,

𝑏

𝑖=1

 𝑖𝑓 𝑏 ≥ 0.

∏
1

𝑎
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

−𝑏

𝑖=1

The convention of affixing ⋆ to a variable name is used for variables that denote bit-sequence
representations of group elements.

The binary relations <, ≤, =, ≥, and > have their conventional meanings on integers and rationals,

and are defined lexicographically on sequences of integers.

𝑓𝑙𝑜𝑜𝑟(𝑥) means the largest integer ≤ x. ceiling (x) means the smallest integer ≥ x.

𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑥), for 𝑥: ℕ, means the smallest integer 𝑙 such that 2𝑙

> 𝑥.

The symbol ⊥ is used to indicate unavailable information, or a failed decryption or validity check.

3. Cryptographic Primitives
3.1. Encoding rules

All integers encodings are unsigned, have a fixed bit length, and are encoded in little-endian byte
order unless otherwise specified.

The following functions convert between sequences of bits, sequences of bytes, and integers:

• 𝐼2𝐿𝐸𝐵𝑆𝑃: (𝑙: ℕ) × {0…2𝑙 − 1} → 𝔹𝑙 , such that 𝐼2𝐿𝐸𝐵𝑆𝑃𝑙(𝑥) is the sequence of 𝑙 bits
representing 𝑥 in little-endian order;

• 𝐼2𝐵𝐸𝐵𝑆𝑃: (𝑙: ℕ) × {0…2𝑙 − 1} → 𝔹𝑙such that 𝐼2𝐵𝐸𝐵𝑆𝑃𝑙 (𝑥) is the sequence of 𝑙 bits
representing 𝑥 in big-endian order.

• 𝐿𝐸𝑂𝑆2𝐼𝑃: (𝑙: ℕ| 𝑙 𝑚𝑜𝑑 8 = 0) × 𝔹𝕐[𝑙/8]

→ {0. . .2𝑙− 1} such that 𝐿𝐸𝑂𝑆2𝐼𝑃𝑙(𝑆) is the integer

represented in little-endian order by the byte sequence S of length 𝑙/8.

• 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃: (𝑙: ℕ) × 𝔹[𝑙] → 𝔹𝕐[𝑐𝑒𝑖𝑙𝑖𝑛𝑔(
𝑙
8
)] defined as follows: pad the input on the right with 8 ∙

𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
𝑙

8
) − 𝑙 zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits

to a byte value with the least significant bit first, and concatenate the resulting bytes in the same
order as the groups.

•𝐿𝐸𝑂𝑆2𝐵𝑆𝑃: (𝑙: ℕ|𝑙 𝑚𝑜𝑑 8 = 0) × 𝔹𝕐[𝑐𝑒𝑖𝑙𝑖𝑛𝑔(
𝑙
8
)] → 𝔹[𝑙] defined as follows: convert each byte to a

group of 8 bits with the least significant bit first, and concatenate the resulting groups in the same
order as the bytes.

 5

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read
from left-to- right, with lines read from top-to-bottom; the breaking of boxes across lines has no
significance. The bit length l is given explicitly in each box, except when it is obvious (e.g. for a
single bit, or for the notation [0]𝑙

representing the sequence of 𝑙 zero bits, or for the output of

𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑙).

The entire diagram represents the sequence of bytes formed by first concatenating these bit
sequences, and then treating each subsequence of 8 bits as a byte with the bits ordered from most
significant to least significant. Thus, the most significant bit in each byte is toward the left of a
diagram. Where bit fields are used, the text will clarify their position in each case.

3.2. Constants
𝑀𝑒𝑟𝑘𝑒𝑙𝐷𝑒𝑝𝑡ℎ: ℕ = 32
𝑁𝑜𝑙𝑑: ℕ = 2
𝑁𝑛𝑒𝑤: ℕ = 2
𝑙𝑣𝑎𝑙𝑢𝑒: ℕ = 64
𝑙𝑚𝑒𝑟𝑘𝑙𝑒: ℕ = 256
𝑙𝑃𝑅𝐹𝑒𝑥𝑝𝑎𝑛𝑑 :ℕ = 256

𝑙𝑃𝑅𝐹𝑛𝑓 :ℕ = 256

𝑙𝑟𝑐𝑚: ℕ = 256
𝑙𝑠𝑘:ℕ = 256
𝑙𝑑:ℕ = 88
𝑙𝑖𝑣𝑘:ℕ = 251
𝑙𝑜𝑣𝑘: ℕ = 256
𝑙𝑠𝑐𝑎𝑙𝑎𝑟 : ℕ = 252
𝑈𝑛𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑑:𝔹𝑙𝑚𝑒𝑟𝑘𝑙𝑒 = 𝐼2𝐿𝐸𝐵𝑆𝑃𝑙𝑚𝑒𝑟𝑘𝑙𝑒(1)

3.3. Hash Functions

3.3.1. BLAKE2 Hash Function

BLAKE2 is a hash defined in [ANWW2013], specifically, BLAKE2b and BLAKE2s variants are used
in shielded transaction.

𝐵𝐿𝐴𝐾𝐸2𝑏𝑙(𝑝, 𝑥) refers to unkeyed 𝐵𝐿𝐴𝐾𝐸2𝑏𝑙 in sequential mode, with an output digest length of
l/8 bytes, 16-byte personalization string p, and input x.

𝐵𝐿𝐴𝐾𝐸2𝑠𝑙(𝑝, 𝑥) refers to unkeyed 𝐵𝐿𝐴𝐾𝐸2𝑠𝑙 in sequential mode, with an output digest length of
l/8 bytes, 8-byte personalization string p, and input x.

3.3.2. CRHivk Hash Function

𝐶𝑅𝐻𝑖𝑣𝑘 is used to derive the incoming viewing key 𝑖𝑣𝑘 for a shielded payment address. It is
defined as follow:

𝐶𝑅𝐻𝑖𝑣𝑘

(𝑎𝑘 ⋆, 𝑛𝑘 ⋆) ∶= 𝐿𝐸𝑂𝑆2𝐼𝑃256(𝐵𝐿𝐴𝐾𝐸2𝑠256("𝑍𝑐𝑎𝑠ℎ𝑖𝑣𝑘”, 𝑐𝑟ℎ𝐼𝑛𝑝𝑢𝑡)) 𝑚𝑜𝑑 2

𝑙𝑖𝑣𝑘

Where

𝑐𝑟ℎ𝐼𝑛𝑝𝑢𝑡 = (𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝑎𝑘 ⋆) || 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝑛𝑘 ⋆))

3.3.3. DiversifyHash Function

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ is used to derive a diversified base from a diversifier.

Let 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝕁
(𝑟)∗

 and U be defined in §3.8.

 6

Define 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ𝑈
𝕁(𝑟)∗ = 𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝑈

𝕁(𝑟)∗ ("Zcash_gd", 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑙𝑑(𝑑))

3.3.4. Pedersen Hash Function

PedersenHash is an algebraic hash function with collision resistance (for fixed input length)
derived from assumed hardness of the Discrete Logarithm Problem on the Jubjub curve.

PedersenHash is used in the incremental Merkle tree over note commitments and in the
definition of Pedersen commitments

Let 𝕁 , 𝕁(𝑟), 𝒪𝕁, 𝑟𝕁, 𝑎𝕁 , 𝑎𝑛𝑑 𝑑𝕁 be as defined in §3.7.

Let 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝕁(𝑟): 𝕁
(𝑟) → 𝔹𝑙𝑚𝑒𝑟𝑘𝑙𝑒 𝑏𝑒 𝑎𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 §3.7.

Let 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ 𝕁
(𝑟)∗ be as defined in §3.7.

Let 𝑐 = 63

Define ℐ: 𝔹𝕐[8] × ℕ → 𝕁(𝑟)∗ by:

ℐ𝑖
𝐷 = 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ 𝕁

(𝑟)∗(𝐷, 32𝑏𝑖𝑡(𝑖 − 1))

Define 𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑜𝑖𝑛𝑡(𝐷: 𝔹𝕐[8], 𝑀:𝔹ℕ+) → 𝕁(𝑟) as follows:

 Pad M to a multiple of 3 bits by appending zero bits, giving M′.

Let 𝑛 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(
𝑙𝑒𝑛𝑔𝑡ℎ(𝑀′)

3∙𝑐
)

Split M′ into n “segments” 𝑀1. . 𝑛 so that 𝑀′

= 𝑐𝑜𝑛𝑐𝑎𝑡𝐵(𝑀1. . 𝑛

), and each of 𝑀1. . 𝑛 − 1
is of

length 3·c bits. (𝑀𝑛 may be shorter.)

Return ∑ [< 𝑀𝑖 >]
𝑛
𝑖=1 ℐ𝑖

𝐷: 𝕁(𝑟)

Where <∙>:𝔹[3∙{1..𝑐}] → {−
𝑟𝕁−1

2
. .
𝑟𝕁+1

2
}{0} is defined as:

 Let 𝑘𝑖 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀𝑖)/3

 Split 𝑀𝑖 into 3-bit “chunks” 𝑚1 . . 𝑘𝑖
so that 𝑀𝑖

= 𝑐𝑜𝑛𝑐𝑎𝑡𝐵(𝑚1 . . 𝑘𝑖

).

 Write each m as[𝑠0
𝑗
, 𝑠1
𝑗
, 𝑠2
𝑗
], and let 𝑒𝑛𝑐(𝑚) = (1 − 2 · 𝑠2

𝑗
) · (1 + 𝑠0

𝑗

+ 2 · 𝑠1
𝑗
): ℤ

 Let < 𝑀𝑖 > = ∑ 𝑒𝑛𝑐(𝑚𝑗)
𝑘𝑖
𝑗=1 · 24(𝑗−1).

Finally, define 𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐻𝑎𝑠ℎ: 𝔹𝕐[8] × 𝔹ℕ+ → 𝔹𝑙𝑚𝑒𝑟𝑘𝑙𝑒 by:

𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐻𝑎𝑠ℎ(𝐷,𝑀) = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝕁(𝑟)(𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑜𝑖𝑛𝑡(𝐷,𝑀))

3.3.5. Mixing Pedersen Hash Function

 7

A mixing Pedersen hash is used to compute 𝜌 from 𝑐𝑚 and 𝑝𝑜𝑠. It takes as input a Pedersen
commitment P, and hashes it with another input x.

Define 𝒥 = 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ 𝕁
(𝑟)∗("Zcash_J_", "")

Define 𝑀𝑖𝑥𝑖𝑛𝑔𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐻𝑎𝑠ℎ: 𝕁 × {0. . 𝑟𝕁 − 1} → 𝕁 by:

𝑀𝑖𝑥𝑖𝑛𝑔𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐻𝑎𝑠ℎ(𝑃, 𝑥) = 𝑃 + [𝑥] 𝒥

3.4. Pseudo Random Function

𝑃𝑅𝐹𝑒𝑥𝑝𝑎𝑛𝑑 is used in to derive the spend authorizing key 𝑎𝑠𝑘 and the proof authorizing key 𝑛𝑠𝑘.

It is instantiated using the BLAKE2b hash function

 𝑃𝑅𝐹𝑠𝑘
𝑒𝑥𝑝𝑎𝑛𝑑

(𝑡) ∶= 𝐵𝐿𝐴𝐾𝐸2𝑏512("𝑍𝑐𝑎𝑠ℎ_𝐸𝑥𝑝𝑎𝑛𝑑𝑆𝑒𝑒𝑑”, 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃 (𝑠𝑘) || 𝑡)

𝑃𝑅𝐹𝑜𝑐𝑘 is used to derive the outgoing cipher key 𝑜𝑐𝑘 used to encrypt an output ciphertext .
It is instantiated using the BLAKE2b hash function.

𝑃𝑅𝐹𝑜𝑣𝑘
𝑜𝑐𝑘

(𝑐𝑣, 𝑐𝑚𝑢 , 𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙𝐾𝑒𝑦) ∶= 𝐵𝐿𝐴𝐾𝐸2𝑏256(“𝒁𝒕𝒓𝒐𝒏_𝑫𝒆𝒓𝒊𝒗𝒆_𝒐𝒄𝒌”, 𝑜𝑐𝑘𝐼𝑛𝑝𝑢𝑡)

where

𝑜𝑐𝑘𝐼𝑛𝑝𝑢𝑡 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝑜𝑣𝑘)||32𝑏𝑦𝑡𝑒 𝑐𝑣||32𝑏𝑦𝑡𝑒 𝑐𝑚𝑢||32𝑏𝑦𝑡𝑒 𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙𝐾𝑒𝑦

𝑃𝑅𝐹𝑛𝑓

is used to derive the nullifier for a note. It is instantiated using the BLAKE2s hash function.

𝑃𝑅𝐹𝑛𝑘⋆
𝑛𝑓

(𝜌 ⋆) = 𝐵𝐿𝐴𝐾𝐸2𝑠256(“𝑍𝑐𝑎𝑠ℎ_𝑛𝑓”, 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝑛𝑘 ⋆)||𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝜌 ⋆))

3.5. Authenticated One-Time Symmetric Encryption

Let 𝑆𝑦𝑚.𝐾 ∶= 𝔹[256], 𝑆𝑦𝑚. 𝑃 ∶= 𝔹𝕐[ℕ], 𝑎𝑛𝑑 𝑆𝑦𝑚. 𝐶 ∶= 𝔹𝕐[ℕ].

Let 𝑆𝑦𝑚. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾(𝑃) be authenticated encryption using 𝐴𝐸𝐴𝐷_𝐶𝐻𝐴𝐶𝐻𝐴20_𝑃𝑂𝐿𝑌1305 [RFC-

7539] encryption of plaintext 𝑃 ∈ 𝑆𝑦𝑚. 𝑃, with empty “associated data", all-zero nonce [0]96,
and 256-bit key 𝐾 ∈ 𝑆𝑦𝑚.𝐾.

Similarly, let 𝑆𝑦𝑚.𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾(𝐶) be 𝐴𝐸𝐴𝐷_𝐶𝐻𝐴𝐶𝐻𝐴20_𝑃𝑂𝐿𝑌1305 decryption of ciphertext 𝐶 ∈

 𝑆𝑦𝑚.𝐶, with empty “associated data", all-zero nonce [0]96, and 256-bit key 𝐾 ∈ 𝑆𝑦𝑚.𝐾. The
result is either the plaintext byte sequence, or ⊥ indicating failure to decrypt.

3.6. Key Agreement and Derivation

𝐾𝐴 is a key agreement scheme. It is instantiated as Diffie-Hellman with cofactor multiplication on
Jubjub as follows:

Let 𝕁, 𝕁 (r), 𝕁 (r)∗, and the cofactor ℎ𝕁 be as defined in §3.7.
Define 𝐾𝐴. 𝑃𝑢𝑏𝑙𝑖𝑐 ∶= 𝕁
Define 𝐾𝐴. 𝑃𝑢𝑏𝑙𝑖𝑐𝑃𝑟𝑖𝑚𝑒𝑂𝑟𝑑𝑒𝑟 ∶= 𝕁(𝑟)∗

Define 𝐾𝐴. 𝑆ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡 ∶= 𝕁(𝑟)
Define 𝐾𝐴. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 ∶= 𝔽𝑟𝕁

Define 𝐾𝐴. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑠𝑘, 𝐵):= [𝑠𝑘]𝐵
Define 𝐾𝐴. 𝐴𝑔𝑟𝑒𝑒(𝑠𝑘, 𝑃) ∶= [ℎ𝕁 · 𝑠𝑘] 𝑃

 8

𝐾𝐷𝐹 is a Key Derivation Function. It is instantiated using 𝐵𝐿𝐴𝐾𝐸2𝑏256 as follows:

𝐾𝐷𝐹(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡, 𝑒𝑝𝑘) ∶= 𝐵𝐿𝐴𝐾𝐸2𝑏256("𝑍𝑡𝑟𝑜𝑛_𝑆𝑎𝑝𝑙𝑖𝑛𝑔𝐾𝐷𝐹”, 𝑘𝑑𝑓𝑖𝑛𝑝𝑢𝑡)

Where

𝑘𝑑𝑓𝑖𝑛𝑝𝑢𝑡 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝑟𝑒𝑝𝑟𝕁(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡)||𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝑟𝑒𝑝𝑟𝕁(𝑒𝑝𝑘))

3.7. Jubjub and RedJubjub

We use an elliptic curve designed to be efficiently implementable in zk-SNARK circuits, called
“Jubjub”.

Let 𝕁 be the group of points (u, v) on a twisted Edwards curve 𝐸𝕁 over 𝐹𝑟𝕁 .

The equation is 𝑎𝕁 ∙ 𝑢
2 + 𝑣2 = 1 + 𝑑𝕁 ∙ 𝑢

2 ∙ 𝑣2 𝑚𝑜𝑑 𝑞𝕁. The parameters are defined as follows.

Let
𝑞𝕁 =52435875175126190479447740508185965837690552500527637822603658699938581

184513

Let
𝑟𝕁 =65544843968907738099309675635232457297059212658723172813653591623921832

54199

(𝑞𝕁 and 𝑟𝕁 are prime.)

Let ℎ𝕁 = 8

Let 𝑎𝕁 = −1

Let 𝑑𝕁 = −
10240

10241
𝑚𝑜𝑑 𝑞𝕁

The zero point with coordinates (0, 1) is denoted 𝒪 𝕁. 𝕁 has order ℎ𝕁 ∙ 𝑟𝕁.

Let 𝑙 𝕁 = 256.

Define 𝑟𝑒𝑝𝑟𝕁: 𝕁 → 𝔹 𝑙 𝕁

such that 𝑟𝑒𝑝𝑟𝕁 (𝑢, 𝑣) = 𝐼2𝐿𝐸𝐵𝑆𝑃256(𝑣 + 2

255 · 𝑢̃), where 𝑢̃ = 𝑢 𝑚𝑜𝑑 2.

Let 𝑎𝑏𝑠𝑡𝕁: 𝔹
 𝑙 𝕁 → 𝕁 ∪ {⊥} be the left inverse of 𝑟𝑒𝑝𝑟𝕁 such that if S is not in the range of 𝑟𝑒𝑝𝑟𝕁 , then

𝑎𝑏𝑠𝑡𝕁(𝑆) =⊥.

Define 𝕁 (r) as the order-𝑟𝕁 subgroup of 𝕁. Note that this includes 𝒪 𝕁. For the set of points of order 𝑟𝕁

(which excludes 𝒪 𝕁), we write 𝕁 (r)∗.

Define 𝕁∗
𝑟 : = {𝑟𝑒𝑝𝑟𝕁(𝑃):)𝔹

 𝑙 𝕁|𝑃 ∈ 𝕁(𝑟)}.

When computing square roots in 𝐹𝑞𝕁

in order to decompress a point encoding, the

implementation must not assume that the square root exists, or that the encoding represents a
point on the curve.

Let 𝑢((𝑢, 𝑣)) = 𝑢 and let 𝑣((𝑢, 𝑣)) = 𝑣. ◦

 9

Define 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝕁(𝑟): 𝕁
(𝑟) → 𝔹 𝑙 𝑚𝑒𝑟𝑘𝑙𝑒

 by

 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝕁(𝑟)(𝑃) = 𝐼2𝐿𝐸𝐵𝑆𝑃𝑙𝑚𝑒𝑟𝑘𝑙𝑒

(𝑢(𝑃)).

RedJubjub is Schnorr-based signature scheme to the Jubjub curve.

Let define 𝒫 as the generator of 𝕁(𝑟).

Define 𝑙 𝐻 = 512

Its associated types are defined as follows:

𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏.𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = 𝔹𝕐[ℕ]

𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = 𝔹
𝕐[𝑐𝑒𝑖𝑙𝑖𝑛𝑔(

𝑙 𝕁

8
)+𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝕁)/8)]

𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑢𝑏𝑙𝑖𝑐 = 𝕁

𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 = 𝐹𝑟𝕁

𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑅𝑎𝑛𝑑𝑜𝑚 = 𝐹𝑟𝕁

Define𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝐺𝑒𝑛𝑃𝑟𝑖𝑣𝑎𝑡𝑒: ()
𝑅
→𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 as:

 Return 𝑠𝑘
𝑅
←𝐹𝑟𝕁 .

Define 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐: 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 → 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑢𝑏𝑙𝑖𝑐 by:

𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑠𝑘) = [𝑠𝑘] 𝒫

.

Define 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝐺𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚: ()
𝑅
→

𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏.𝑅𝑎𝑛𝑑𝑜𝑚 as:

Choose a byte sequence T uniformly at random on 𝔹𝕐[(𝑙 𝐻+128)/8].

Return 𝐵𝐿𝐴𝐾𝐸2𝑏512("𝑍𝑐𝑎𝑠ℎ_𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏𝐻”, 𝑇)

Define 𝒪𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏.𝑟𝑎𝑛𝑑𝑜𝑚 = 0 (𝑚𝑜𝑑 𝑟𝕁).

Define 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑟𝑖𝑣𝑎𝑡𝑒: 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑅𝑎𝑛𝑑𝑜𝑚 × 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 →
 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 by:

𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑟𝑖𝑣𝑎𝑡𝑒(𝛼, 𝑠𝑘) ∶= 𝑠𝑘 + 𝛼 (𝑚𝑜𝑑 𝑟𝕁).

Define 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑢𝑏𝑙𝑖𝑐: 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑅𝑎𝑛𝑑𝑜𝑚 × 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑢𝑏𝑙𝑖𝑐 →
 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑢𝑏𝑙𝑖𝑐 as: 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝛼, 𝑣𝑘) ∶= 𝑣𝑘 + [𝛼] 𝒫

.

Define 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑆𝑖𝑔𝑛:

(𝑠𝑘: 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏.𝑃𝑟𝑖𝑣𝑎𝑡𝑒) × (𝑀:𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏.𝑀𝑒𝑠𝑠𝑎𝑔𝑒)
𝑅
→𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

as:

Choose a byte sequence T uniformly at random on 𝔹𝕐[(𝑙 𝐻+128)/8].

 10

Let 𝑟 = 𝐵𝐿𝐴𝐾𝐸2𝑏512("Zcash_RedJubjubH", 𝑇||𝑀).
Let 𝑅 = [𝑟] 𝒫

.

Let 𝑅 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑙 𝕁(𝑟𝑒𝑝𝑟𝕁(𝑅)

Let 𝑣𝑘 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑙 𝕁(𝑟𝑒𝑝𝑟𝕁(𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝐷𝑒𝑟𝑖𝑣𝑟𝑃𝑢𝑏𝑙𝑖𝑐(𝑠𝑘))

Let 𝑆 = (𝑟 + 𝐵𝐿𝐴𝐾𝐸2𝑏512("Zcash_RedJubjubH", 𝑅||𝑣𝑘||𝑀) ∙ 𝑠𝑘) 𝑚𝑜𝑑 𝑟𝕁

Let 𝑆 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝕁)(𝐼2𝐿𝐸𝐵𝑆𝑃𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝕁)(𝑆))

Return 𝑅||𝑆

Define 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑉𝑒𝑟𝑖𝑓𝑦:
(𝑣𝑘: 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑃𝑢𝑏𝑙𝑖𝑐) × (𝑀: 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏.𝑀𝑒𝑠𝑠𝑎𝑔𝑒) × (𝜎: 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏. 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒) → 𝔹
as:
Let 𝑅 be the first ceiling 𝑙 𝕁/8 bytes of σ, and let 𝑆 be the remaining ceiling 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝕁)/

8) bytes.

Let 𝑅 = 𝑎𝑏𝑠𝑡𝕁(𝐿𝐸𝑂𝑆2𝐵𝑆𝑃𝑙 𝕁(𝑅), and 𝑆 = 𝐿𝐸𝑂𝑆2𝐼𝑃𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝕁)(𝑆)

Let 𝑣𝑘 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑙 𝕁(𝑟𝑒𝑝𝑟𝕁(𝑣𝑘))

Let 𝑐 = 𝐵𝐿𝐴𝐾𝐸2𝑏512(“Zcash_RedJubjubH”, 𝑅||𝑣𝑘||𝑀)

Return 1 if 𝑅 ≠ ⊥ and 𝑆 < 𝑟𝕁 and [ℎ𝕁](−[𝑆]𝒫 + 𝑅 + [𝑐]𝑣𝑘) = 𝒪 𝕁, otherwise 0

3.7.1. Spend Authorization Signature

SpendAuthSig is instantiated as RedJubjub with key re-randomization.

The generator is 𝒫 = 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝕁
(𝑟)∗
("Zcash_G", "").

3.7.2. Binding Signature

BindingSig is instantiated as RedJubjub, without use of key re-randomization.

The generator is 𝒫 = 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝕁
(𝑟)∗
("Zcash_cv", "𝑟").

3.8. Group Hash into Jubjub

Let 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ. 𝐼𝑛𝑝𝑢𝑡 = 𝔹𝕐[8]

× 𝔹𝕐[ℕ] , and let 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ. 𝑈𝑅𝑆𝑇𝑦𝑝𝑒 = 𝔹𝕐[64]

(The input element with type 𝔹𝕐[8] is intended to act as a “personalization” parameter to
distinguish uses of the group hash for different purposes.)

Let URS be the MPC randomness beacon,
URS=” 096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0 ”
Let 𝐷:𝔹𝕐[ℕ] be a 8-byte domain separator, and let 𝑀:𝔹𝕐[ℕ] be the hash input.

The hash 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝑈𝑅𝑆
𝕁(𝑟)∗

(𝐷,𝑀): 𝕁(𝑟)∗ 𝑖s calculated as follows:
let 𝐻 = 𝐵𝐿𝐴𝐾𝐸2𝑠256 (𝐷, 𝑈𝑅𝑆 ||𝑀)
let 𝑃 = 𝑎𝑏𝑠𝑡𝕁 (𝐿𝐸𝑂𝑆2𝐵𝑆𝑃256 (𝐻)

if 𝑃 =⊥, then return⊥
let 𝑄 = [ℎ𝕁] 𝑃

if 𝑄 = 𝒪 𝕁 then return ⊥, else return Q.

Define 𝑓𝑖𝑟𝑠𝑡: (𝔹𝕐 → 𝑇 ∪ {⊥}) → 𝑇 ∪ {⊥} so that 𝑓𝑖𝑟𝑠𝑡(𝑓) = 𝑓(𝑖) where I is the least integer in 𝔹𝕐
such that 𝑓(𝑖) ≠⊥, or ⊥ if no such i exists.
Define

𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝕁
(𝑟)∗

= 𝑓𝑖𝑟𝑠𝑡(𝑖: 𝔹𝕐 → 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝑈𝑅𝑆
𝕁(𝑟)∗ (𝐷,𝑀 |[𝑖]):

𝕁(𝑟)∗ ∪ {⊥}).

3.9. Commitment Schemes

3.9.1. Note Commitments

 11

Let define WindowedPedersenCommit as follows:

𝑊𝑖𝑛𝑑𝑜𝑤𝑒𝑑𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑟 (𝑠)
= 𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑜𝑖𝑛𝑡(“𝑍𝑐𝑎𝑠ℎ_𝑃𝐻”, 𝑠)

+ [𝑟] 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝕁
(𝑟)∗
("𝑍𝑐𝑎𝑠ℎ_𝑃𝐻”, “𝑟")

Using WindowedPedersenCommit, the commitment scheme NoteCommit is instantiated as
follows:

𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚

(𝑔𝑑 ⋆ , 𝑝𝑘𝑑 ⋆ , 𝑣) ∶
= 𝑊𝑖𝑛𝑑𝑜𝑤𝑒𝑑𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚([1]

6

|| 𝐼2𝐿𝐸𝐵𝑆𝑃64 (𝑣) || 𝑔𝑑 ⋆ || 𝑝𝑘𝑑 ⋆)

𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡. 𝐺𝑒𝑛𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟() generates the uniform distribution on 𝐹𝑟𝕁 .

3.9.2. Value Commitments

In order to support homomorphic property, we define “homomorphic” Pedersen commitments
as follows:

𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑣 (𝐷, 𝑣)

= [𝑣] 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝕁
(𝑟)∗
(𝐷, “𝒗") + [𝑟𝑐𝑣] 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝕁

(𝑟)∗
(𝐷, “𝒓")

𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡. 𝐺𝑒𝑛𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟() generates the uniform distribution on 𝐹𝑟𝕁.

Define:

𝒱 = 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝕁
(𝑟)∗

(“𝑍𝑐𝑎𝑠ℎ_𝑐𝑣”, “𝑣”)

ℛ = 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝ℎ𝑎𝑠ℎ𝕁
(𝑟)∗

(“𝑍𝑐𝑎𝑠ℎ_𝑐𝑣”, “𝑟”)

Value commitment scheme is instantiated as follows using HomomorphicPedersenCommit:

𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑣 (𝑣) = 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑣 (“𝑍𝑐𝑎𝑠ℎ_𝑐𝑣”, 𝑣).

Which is equivalent to:

𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑣(𝑣) = [𝑣]𝒱 + [𝑟𝑐𝑣]ℛ

4. Concepts
4.1. Payment Addresses and Keys

Users who wish to receive payments under this scheme first generate a random spending key sk.

The following diagram depicts the relations between key components. Arrows point from a
component to any other component(s) that can be derived from it. Double lines indicate that the
same component is used in multiple abstractions.

 12

For each spending key, there is also a default diversified payment address with a “random-
looking” diversifier. This allows an implementation that does not expose diversified addresses as
a user-visible feature, to use a default address that cannot be distinguished (without knowledge
of the spending key) from one with a random diversifier as above.

 Define:

𝐶ℎ𝑒𝑐𝑘𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑟(𝑑) = {
⊥, if DiversifyHash(d) =⊥
𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑟(𝑠𝑘) = 𝑓𝑖𝑟𝑠𝑡(𝑖:𝔹𝑌 → 𝐶ℎ𝑒𝑐𝑘𝐷𝑖𝑐𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑟 (𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒ℓd
8

(𝑃𝑅𝐹𝑠𝑘
𝑒𝑥𝑝𝑎𝑛𝑑(3, 𝑖))) : 𝕁 (r)∗ ∪ {⊥})

For a random spending key, if 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑟 returns ⊥, then discard the key and repeat
with a different sk.

The composition of shielded payment addresses, incoming viewing keys, full viewing keys, and
spending keys is a cryptographic protocol detail that should not normally be exposed to users.
However, user-visible operations should be provided to obtain a shielded payment address or
incoming viewing key or full viewing key from a spending key.

Users can accept payment from multiple parties with a single shielded payment address and the
fact that these payments are destined to the same payee is not revealed on the block chain, even
to the paying parties. However, if two parties collude to compare a shielded payment address
they can trivially determine they are the same. In the case that a payee wishes to prevent this
they should create a distinct shielded payment address for each payer.

4.2. Notes

A note represents that a value v is spendable by the recipient who holds the spending key
corresponding to a given shielded payment address.

 13

A note is a tuple(𝑑, 𝑝𝑘𝑑 , 𝑣, 𝑟𝑐𝑚), where:

• 𝑑:𝔹𝑙𝑑 is the diversifier of the recipient’s shielded payment address;
• 𝑝𝑘𝑑 is the diversified transmission key of the recipient’s shielded payment address ;
• 𝑣 is an integer representing the value of the note;
• 𝑟𝑐𝑚 is a random commitment trapdoor which is a random number, indeed.

Where notes are created and send, only a commitment to the above values is disclosed publically,
and added to a data structure called note commitment tree. This allows the value and recipient
be kept private, while the commitment is used by the zero-knowledge proof when the note is
spent, to check that it exists on the block chain.

Let 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ be as defined in § 3.3.3.

A note commitment on a note(𝑑, 𝑝𝑘𝑑 , 𝑣, 𝑟𝑐𝑚) is computed as:

𝑔𝑑 = 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑)

𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡(𝑛) = {
⊥

𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑟𝑐𝑚(𝑟𝑒𝑝𝑟𝕁(𝑔𝑑), 𝑟𝑒𝑝𝑟𝕁(𝑝𝑘𝑑), 𝑣), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑟𝑐𝑚 is instantiated in §3.8.

A nullifier (denoted 𝑛𝑓) is derived from nullifier deriving key 𝑛𝑘. This computation uses a Pseudo
Random Function.

A note is spent by proving knowledge of (𝜌, 𝑎𝑘, 𝑛𝑠𝑘) in zero knowledge while publically
disclosing its nullifier 𝑛𝑓, allowing 𝑛𝑓 to be used to prevent double-spending. A spend
authorization signature is also required, in order to demonstrate knowledge of 𝑎𝑠𝑘.

4.3. Transactions and Treestates

To each transaction there are associated initial treestates. Each treestate consists of a note
commitment tree and a nullifier set.

An anchor is a Merkle tree root of a note commitment tree. It uniquely identifies a note
commitment tree state given the assumed security properties of the Merkle tree’s hash function.
Since the nullifier set is always updated together with the note commitment tree, this also
identifies a particular state of the associated nullifier set.

In a given block chain, treestates are chained as follows:

• The input treestate of the first block is the empty treestate.
• The input treestate of the first transaction of a block is the final treestate of the

immediately preceding block.
• The input treestate of each subsequent transaction in a block is the output treestate of

the immediately preceding transaction.
• The final treestate of a block is the output treestate of its last transaction.

4.4. Spend Descriptions and Receive Descriptions

Spend descriptions and Receive descriptions are data included in a transaction that describe
Spend transfers and Receive transfers, respectively.

 14

A Spend transfer spends a note 𝒏𝑜𝑙𝑑. Its Spend description includes a Pedersen value commitment
to the value of the note. It is associated with an instance of a Spend proof for which it provides a
zk-SNARK proof.

An Receive transfer creates a note 𝒏𝑛𝑒𝑤. Its Receive description includes a Pedersen value
commitment to the note value. It is associated with an instance of an Output proof (§6.2.5) for
which it provides a zk-SNARK proof.

Each transaction has a sequence of Spend descriptions and a sequence of Receive descriptions.

To ensure balance, we use a homomorphic property of Pedersen commitments that allows them
to be added and subtracted, as elliptic curve points. The result of adding two Pedersen value
commitments, committing to values v1 and v2, is a new Pedersen value commitment that commits

to v1 + v2. Subtraction works similarly.

Therefore, balance can be enforced by adding all of the value commitments for shielded inputs,
subtracting all of the value commitments for shielded outputs, and proving by use of a binding
signature that the result commits to a value consistent with the net transparent value change.
This approach allows all of the zk-SNARK statements to be independent of each other, potentially
increasing opportunities for precomputation.

A Spend description includes an anchor, which refers to the output treestate of a previous block.
It also reveals a nullifier, which allows detection of double-spends.

4.5. Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate. As valid
transactions are processed, the nullifiers revealed in Spend descriptions are inserted into the
nullifier set associated with the new treestate. Nullifiers are enforced to be unique within a valid
block chain, in order to prevent double-spends.

5. zk-SNARK

Zero-knowledge proving system is a cryptographic protocol that allows proving a particular
statement, dependent on primary and auxiliary inputs, in zero knowledge — that is, without
revealing information about the auxiliary inputs other than that implied by the statement.

5.1. Zero-Knowledge Proof Model

We use zk-SNARK with the proving system describe in [Groth2016]. These are used for proofs in
spend descriptions and output descriptions.

A preprocessing zk-SNARK instance 𝑍𝐾 defines:

• a type of zero-knowledge proving keys, 𝑍𝐾. 𝑃𝑟𝑜𝑣𝑖𝑛𝑔𝐾𝑒𝑦;
• a type of zero-knowledge verifying keys, 𝑍𝐾. 𝑉𝑒𝑟𝑖𝑓𝑦𝑖𝑛𝑔𝐾𝑒𝑦;
• a type of primary inputs 𝑍𝐾. 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡;
• a type of auxiliary inputs 𝑍𝐾.𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡;
• a type of proofs 𝑍𝐾. 𝑃𝑟𝑜𝑜𝑓;
• a type 𝑍𝐾. 𝑆𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔𝐼𝑛𝑝𝑢𝑡𝑠 ⊆ 𝑍𝐾. 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡 × 𝑍𝐾. 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡 of inputs satisfying
the statement;

• a randomized key pair generation algorithm 𝑍𝐾. 𝐺𝑒𝑛 ∶ ()
𝑅
→

𝑍𝐾. 𝑃𝑟𝑜𝑣𝑖𝑛𝑔𝐾𝑒𝑦 ×

 𝑍𝐾. 𝑉𝑒𝑟𝑖𝑓𝑦𝑖𝑛𝑔𝐾𝑒𝑦;
• a proving algorithm 𝑍𝐾. 𝑃𝑟𝑜𝑣𝑒: 𝑍𝐾. 𝑃𝑟𝑜𝑣𝑖𝑛𝑔𝐾𝑒𝑦 × 𝑍𝐾. 𝑆𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔𝐼𝑛𝑝𝑢𝑡𝑠 → 𝑍𝐾. 𝑃𝑟𝑜𝑜𝑓;
• a verifying algorithm 𝑍𝐾. 𝑉𝑒𝑟𝑖𝑓𝑦: 𝑍𝐾. 𝑉𝑒𝑟𝑖𝑓𝑦𝑖𝑛𝑔𝐾𝑒𝑦 × 𝑍𝐾. 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡 × 𝑍𝐾.𝑃𝑟𝑜𝑜𝑓 → 𝔹

;

 15

A proof consists of (𝜋𝐴: 𝕊1
(𝑟)∗, 𝜋𝐵: 𝕊2

(𝑟)∗, 𝜋𝐶: 𝕊1
(𝑟)∗). It is computed as described using the pairing

parameters in curve BLS12-381[Bowe2017].

A proof is encoded by concatenating the encodings of its elements; for the BLS12-381 pairing this
is:

384𝑏𝑖𝑡 𝜋𝐴 ||768𝑏𝑖𝑡 𝜋𝐵||384𝑏𝑖𝑡 𝜋𝐶

The resulting proof size is 192 bytes.

 Zk-SNARK protocol is detailed as follows.

5.2. Construct zk-SNARK

This section will introduce how to construct zk-SNARK in shielded transaction. we will give a
brief overview of how the rules for determining a valid transaction get transformed into
equations that can then be evaluated on a candidate solution without revealing any sensitive
information to the parties verifying the equations.

 The main step is:

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 → 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 → 𝑅1𝐶𝑆 → 𝑄𝐴𝑃 → 𝑧𝑘 − 𝑆𝐴𝑁𝑅𝐾

5.2.1. Generate Arithmetic Circuit

The first step, we convert the original code, which may contain arbitrarily complex statements
and expressions, into a sequence of statements that are of two forms: 𝑥 = 𝑦 (where y can be a
variable or a number)and 𝑥 = 𝑦 (𝑜𝑝) 𝑧 (where 𝑜𝑝 can be +,−,∗,/ and 𝑦 and 𝑧 can be variables,
numbers or themselves sub-expressions). Each of these statements is kind of like logic gates in a
circuit.

To take an example, prove that we know the solution to equation:𝑥3 + 𝑥 + 5 = 35 The result of
the process for the above equation is as follows:

𝑠𝑦𝑚_1 = 𝑥 ∗ 𝑥
𝑦 = 𝑠𝑦𝑚_1 ∗ 𝑥
𝑠𝑦𝑚_2 = 𝑦 + 𝑥
~𝑜𝑢𝑡 = 𝑠𝑦𝑚_2 + 5

5.2.2. R1CS

Now, we convert this into something called a rank-1 constraint system (R1CS). An R1CS is a
sequence of groups of three vectors (a, b, c), and the solution to an R1CS is a vector s, where s
must satisfy the equation 𝑠 . 𝑎 ∗ 𝑠 . 𝑏 − 𝑠 . 𝑐 = 0, where . represents the dot product in simpler
terms, if we "zip together" a and s, multiplying the two values in the same positions, and then
take the sum of these products, then do the same to b and s and then c and s, then the third result
equals the product of the first two results. For example, this is a satisfied R1CS:

𝑠 = (1,3,35,9,27,30)

𝑎 = (5,0,0,0,0,1)

𝑏 = (1,0,0,0,0,0)

𝑐 = (0,0,1,0,0,0)

 16

Instead of having just one constraint, we are going to have many constraints: one for each logic
gate. There is a standard way of converting a logic gate into a (𝑎, 𝑏, 𝑐) triple depending on what
the operation is (+,−,∗ 𝑜𝑟 /) and whether the arguments are variables or numbers. The length of
each vector is equal to the total number of variables in the system, including a dummy variable
~𝑜𝑛𝑒 at the first index representing the number 1, the input variables, a dummy variable ~𝑜𝑢𝑡
representing the output, and then all of the intermediate variables (𝑠𝑦𝑚1 and 𝑠𝑦𝑚2 above); the
vectors are generally going to be very sparse, only filling in the slots corresponding to the
variables that are affected by some particular logic gate.

First, we’ll provide the variable mapping that we’ll use:

′~𝑜𝑛𝑒′, ′𝑥′, ′~𝑜𝑢𝑡′, ′𝑠𝑦𝑚_1′, ′𝑦′, ′𝑠𝑦𝑚_2′

The solution vector will consist of assignments for all of these variables, in that order.

Now, we’ll give the (𝑎, 𝑏, 𝑐) triple for the first gate:

𝑎 = [0, 1, 0, 0, 0, 0]
𝑏 = [0, 1, 0, 0, 0, 0]
𝑐 = [0, 0, 0, 1, 0, 0]

You can see that if the solution vector contains 3 in the second position, and 9 in the fourth
position, then regardless of the rest of the contents of the solution vector, the dot product check
will boil down to 3 ∗ 3 = 9, and so it will pass. If the solution vector has -3 in the second
position and 9 in the fourth position, the check will also pass; in fact, if the solution vector has 7
in the second position and 49 in the fourth position then that check will still pass — the purpose
of this first check is to verify the consistency of the inputs and outputs of the first gate only.

Now, let’s go on to the second gate:

𝑎 = [0, 0, 0, 1, 0, 0]
𝑏 = [0, 1, 0, 0, 0, 0]
𝑐 = [0, 0, 0, 0, 1, 0]

In a similar style to the first dot product check, here we’re checking that 𝑠𝑦𝑚_1 ∗ 𝑥 = 𝑦.

Now, the third gate:

𝑎 = [0, 1, 0, 0, 1, 0]
𝑏 = [1, 0, 0, 0, 0, 0]
𝑐 = [0, 0, 0, 0, 0, 1]

Here, the pattern is somewhat different: it’s multiplying the first element in the solution vector
by the second element, then by the fifth element, adding the two results, and checking if the sum
equals the sixth element. Because the first element in the solution vector is always one, this is just
an addition check, checking that the output equals the sum of the two inputs.

Finally, the fourth gate:

𝑎 = [5, 0, 0, 0, 0, 1]
𝑏 = [1, 0, 0, 0, 0, 0]
𝑐 = [0, 0, 1, 0, 0, 0]

 17

Here, we’re evaluating the last check, ~𝑜𝑢𝑡 = 𝑠𝑦𝑚_2 + 5. The dot product check works by
taking the sixth element in the solution vector, adding five times the first element (reminder: the
first element is 1, so this effectively means adding 5), and checking it against the third element,
which is where we store the output variable.

And there we have our R1CS with four constraints. The witness is simply the assignment to all
the variables, including input, output and internal variables:

[1, 3, 35, 9, 27, 30]

We can simply compute this by “executing” the code above, starting off with the input variable
assignment x=3, and putting in the values of all the intermediate variables and the output as you
compute them.

The complete R1CS put together is:

𝐴

[0, 1, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0]
[0, 1, 0, 0, 1, 0]
[5, 0, 0, 0, 0, 1]

𝐵

[0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0]

𝐶

[0, 0, 0, 1, 0, 0]
[0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 0, 0]

5.2.3. QAP

The next step is taking this R1CS and converting it into QAP form, which implements the exact
same logic except using polynomials instead of dot products. We do this as follows. We go from
four groups of three vectors of length six to six groups of three degree-3 polynomials, where
evaluating the polynomials at each x coordinate represents one of the constraints. That is, if we
evaluate the polynomials at 𝑥 = 1, then we get our first set of vectors, if we evaluate the
polynomials at 𝑥 = 2, then we get our second set of vectors, and so on.

We can make this transformation using something called a Lagrange interpolation. The problem
that a Lagrange interpolation solves is this: if you have a set of points (ie. (x, y) coordinate pairs),
then doing a Lagrange interpolation on those points gives you a polynomial that passes through
all of those points. We do this by decomposing the problem: for each x coordinate, we create a
polynomial that has the desired y coordinate at that x coordinate and a y coordinate of 0 at all the
other x coordinates we are interested in, and then to get the final result we add all of the
polynomials together.

 18

Now, let’s use Lagrange interpolation to transform our R1CS. What we are going to do is take the
first value out of every a vector, use Lagrange interpolation to make a polynomial out of that
(where evaluating the polynomial at 𝑖 gets you the first value of the 𝑖𝑡ℎ a vector), repeat the
process for the first value of every b and c vector, and then repeat that process for the second
values, the third, values, and so on.

The reason of above transformation is that instead of checking the constraints in the R1CS
individually, we can now check all of the constraints at the same time by doing the dot product
check on the polynomials.

𝐴(𝑥) = 𝑠. 𝑎 = (1,3,35,9,27,30). (𝐴1(𝑥), 𝐴2(𝑥), 𝐴3(𝑥), 𝐴4(𝑥), 𝐴5(𝑥), 𝐴6(𝑥))

𝐵(𝑥) = 𝑠. 𝑏 = (1,3,35,9,27,30). (𝐵1(𝑥), 𝐵2(𝑥), 𝐵3(𝑥), 𝐵4(𝑥), 𝐵5(𝑥), 𝐵6(𝑥))

𝐶(𝑥) = 𝑠. 𝑐 = (1,3,35,9,27,30). (𝐶1(𝑥), 𝐶2(𝑥), 𝐶3(𝑥), 𝐶4(𝑥), 𝐶5(𝑥), 𝐶6(𝑥))

𝐴(𝑥) ∗ 𝐵(𝑥) − 𝐶(𝑥) = 𝐻 ∗ 𝑍(𝑥)

Because in this case the dot product check is a series of additions and multiplications of
polynomials, the result is itself going to be a polynomial. If the resulting polynomial, evaluated at
every x coordinate that we used above to represent a logic gate, is equal to zero, then that means
that all of the checks pass; if the resulting polynomial evaluated at least one of the 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒
representing a logic gate gives a nonzero value, then that means that the values going into and
out of that logic gate are inconsistent (i.e. the gate is 𝑦 = 𝑥 ∗ 𝑠𝑦𝑚_1 but the provided values
might be 𝑥 = 2, 𝑠𝑦𝑚1 = 2, 𝑦 = 5).

Note that the resulting polynomial does not itself have to be zero, and in fact in most cases won’t
be; it could have any behavior at the points that don’t correspond to any logic gates, as long as the
result is zero at all the points that do correspond to some gate. To check correctness, we don’t
actually evaluate the polynomial 𝑡 = 𝐴 . 𝑠 ∗ 𝐵 . 𝑠 − 𝐶 . 𝑠 at every point corresponding to a gate;
instead, we divide t by another polynomial, Z, and check that Z evenly divides t - that is, the
division t / Z leaves no remainder.

Z is defined as (𝑥 − 1) ∗ (𝑥 − 2) ∗ (𝑥 − 3) … - the simplest polynomial that is equal to zero at
all points that correspond to logic gates. It is an elementary fact of algebra that any polynomial
that is equal to zero at all of these points has to be a multiple of this minimal polynomial, and if a
polynomial is a multiple of Z then its evaluation at any of those points will be zero; this
equivalence makes our job much easier.

In order to accelerate polynomial A(x), B(x) and C(x) with FFT, we often define 𝑍 =
(𝑥 − 𝑤0)(𝑥 − 𝑤1)(𝑥 − 𝑤3)…, where 𝑤 is the 𝑛𝑡ℎ roots of unity, n is the smallest power of 2 that
is bigger than number of constraints.

5.2.4. zk-SNARK

Based on QAP, we construct a Non-Interactive Zero Knowledge argument for arithmetic
satisfiability where a proof consists of 3 group elements. The proof is easy to verify. The verifier
just needs to compute a number of exponentiations proportional to the statement size and check
a single pairing product equation, which only has 3 pairings. If more details are needed, please
refer to [Groth2016].

6. Shielded Transaction

Flow of building a transaction in a wallet is as following.

 19

Flow of verifying a transaction on the chain is as following.

Flow of Executing a transaction on the chain is as following.

 20

6.1. Trusted Setup

The target of Trusted Setup phase is to generate common reference string(CRS) for partial zk-
SNARK parameters.

We construct CRS based on multi-party computation based on MPC ceremony of Zcash. The
security of trusted setup relies on that one of the participants is honest, that is, discard the toxic
waste after generating corresponding parameters.

6.2. Wallet

6.2.1. Create Payment Address

Let 𝑃𝑅𝐹𝑒𝑥𝑝𝑎𝑛𝑑 and 𝑃𝑅𝐹𝑜𝑐𝑘 be Pseudo Random Functions instantiated in § 3.3.
Let 𝐶𝑅𝐻𝑖𝑣𝑘 be a hash function, instantiated in § 3.3.2.
Let 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ be as defined in § 3.3.3.
Let 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔, instantiated in §3.7.1, be a signature scheme with re-randomizable keys.

Let 𝑟𝑒𝑝𝑟𝕁, 𝕁
(𝑟), 𝕁(𝑟)∗, and𝕁∗

(𝑟)
 be as defined in §3.7, and let 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝕁

(𝑟)∗
 be as defined in §3.3

Define ℋ = 𝐹𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝕁
(𝑟)∗
(Zcash_H, ””)

Define 𝑡𝑜𝑆𝑐𝑎𝑙𝑎𝑟 (𝑥: 𝔹 Y [
𝑙𝑃𝑅𝐹𝑒𝑥𝑝𝑒𝑛𝑑

8]) = 𝐿𝐸𝑂𝑆2𝐼𝑃𝑙𝑃𝑅𝐹𝑒𝑥𝑝𝑒𝑛𝑑(𝑥) 𝑚𝑜𝑑 𝑟𝕁

A new spending key 𝑠𝑘 is generated by choosing a bit sequence uniformly at random from𝔹𝑙𝑠𝑘 .
From this spending key, the spend authorizing key ask, the proof authorizing key 𝑛𝑠𝑘, and the
outgoing key ovk are devived as following.

𝑎𝑠𝑘 = 𝑇𝑜𝑆𝑐𝑎𝑙𝑎𝑟 (𝑃𝑅𝐹𝑠𝑘
𝑒𝑥𝑝𝑎𝑛𝑑(0))

𝑛𝑠𝑘 = 𝑇𝑜𝑆𝑐𝑎𝑙𝑎𝑟 (𝑃𝑅𝐹𝑠𝑘
𝑒𝑥𝑝𝑎𝑛𝑑(1))

𝑜𝑣𝑘 = 𝑇𝑜𝑆𝑐𝑎𝑙𝑎𝑟 (𝑃𝑅𝐹𝑠𝑘
𝑒𝑥𝑝𝑎𝑛𝑑(2))

If 𝑎𝑠𝑘 = 0, discard this key and repeat with a new sk.

𝑎𝑘, 𝑛𝑘 and the incoming viewing key 𝑖𝑣𝑘 are then derived as:

𝑎𝑘 = 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑎𝑠𝑘)

 21

𝑛𝑘 = [𝑛𝑠𝑘]ℋ

𝑖𝑣𝑘 = 𝐶𝑅𝐻𝑖𝑣𝑘(𝑟𝑒𝑝𝑟𝕁(𝑎𝑘), 𝑟𝑒𝑝𝑟𝕁(𝑛𝑘))

If 𝑖𝑣𝑘 = 0, discard this key and repeat with a new key.

Multiple diversified payment addresses with the same spending authority could be created
efficiently. A group of such addresses shares the same full viewing key and incoming viewing key.

To create a new diversified payment address given an incoming viewing key 𝑖𝑣𝑘, repeatedly pick
a diversifier 𝑑 uniformly at random from 𝔹𝑙𝑑

until 𝑔𝑑 = 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑) is not ⊥. Then

calculate:

𝑝𝑘𝑑 = 𝐾𝐴.𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑖𝑣𝑘, 𝑔𝑑)

(𝑑, 𝑝𝑘𝑑) is the resulting diversified payment address.

In addition, for each spending key, there is also a default diversified payment address with a
“random-looking” diversifier. This allows an implementation that does not expose diversified
addresses as a user-visible feature, to use a default address that cannot be distinguished (without
knowledge of the spending key) from one with a random diversifier as above.

 Define:

𝐶ℎ𝑒𝑐𝑘𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑟(𝑑) = {
⊥, if DiversifyHash(d) =⊥
𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑟(𝑠𝑘) = 𝑓𝑖𝑟𝑠𝑡(𝑖:𝔹𝑌 → 𝐶ℎ𝑒𝑐𝑘𝐷𝑖𝑐𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑟 (𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒ℓd
8

(𝑃𝑅𝐹𝑠𝑘
𝑒𝑥𝑝𝑎𝑛𝑑(3, 𝑖))) : 𝕁 (r)∗ ∪ {⊥})

For a random spending key, if 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑟 returns ⊥, then discard the key and repeat
with a different sk.

6.2.2. Scan Blockchain

Block chain scanning requires only the 𝑛𝑘 and 𝑖𝑣𝑘 key components.

Giving the block chain, and (𝑛𝑘, 𝑖𝑣𝑘), the following algorithm can be used to obtain each note
send to the corresponding shield payment address, its memo field, and its final status.

Initialize 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑆𝑒𝑡:𝒫(𝑁𝑜𝑡𝑒 × 𝔹𝕐[512]) = {}

Initialize 𝑆𝑝𝑒𝑛𝑑𝑆𝑒𝑡: 𝒫(𝑁𝑜𝑡𝑒) = {}

Initialize 𝑁𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝑀𝑎𝑝:𝔹𝑙𝑃𝑅𝐹𝑛𝑓 → 𝑁𝑜𝑡𝑒 to the empty mapping.

 For each transaction tx,
 For each output description in tx with note position pos,

Attempt to decrypt the transmitted note ciphertext components epk and Cenc

using ivk. If this succeeds giving np:
Extract n and 𝑚𝑒𝑚𝑜: 𝔹𝕐[512] from np.
Add (n, memo) to ReceivedSet.
Calculate the nullifier nf of n using nk and pos.
 Add the mapping nf → n to NullifierMap.

For each Spend description in tx,
Let nf be the nullifier of the Spend description.
If nf is present in NullifierMap, add NullifierMap(nf) to SpentSet.

Return (ReceivedSet, SpentSet).

 22

6.2.3. Create Spend Proof

Zero-Knowledge proof protocol zk-SNARK is used in shielded transaction.
A valid instance of 𝜋𝑍𝐾𝑠𝑝𝑒𝑛𝑑 assures that given a primary input:

(𝑟𝑡:𝔹𝑙𝑀𝑒𝑟𝑘𝑙𝑒 ,
𝑐𝑣𝑜𝑙𝑑: 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡. 𝑜𝑢𝑡𝑝𝑢𝑡,

𝑛𝑓𝑜𝑙𝑑: 𝔹𝑙𝑃𝑅𝐹𝑛𝑓 ,
 𝑟𝑘: 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔. 𝑃𝑢𝑏𝑙𝑖𝑐)

The prover knows an auxiliary input:

(𝑣𝑜𝑢𝑐ℎ𝑒𝑟𝑃𝑎𝑡ℎ: 𝔹[𝑙𝑀𝑒𝑟𝑘𝑙𝑒][𝑙𝑀𝑒𝑟𝑘𝑙𝑒𝐷𝑒𝑝𝑡ℎ],
𝑝𝑜𝑠: {0,1, … , 2𝑀𝑒𝑟𝑘𝑙𝑒𝐷𝑒𝑝𝑡ℎ − 1},

𝑔𝑑: 𝕁,
𝑝𝑘𝑑: 𝕁,

𝑣𝑜𝑙𝑑 : {0, …2𝑙𝑣𝑎𝑙𝑢𝑒 − 1},
𝑟𝑐𝑣𝑜𝑙𝑑 : {0, … 2𝑙𝑠𝑐𝑎𝑙𝑎𝑟 − 1},

𝑐𝑚𝑜𝑙𝑑: 𝕁,
𝑟𝑐𝑚𝑜𝑙𝑑: {0, … 2𝑙𝑠𝑐𝑎𝑙𝑎𝑟 − 1},
𝛼: {0, …2𝑙𝑠𝑐𝑎𝑙𝑎𝑟 − 1},
𝑎𝑘: 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔,

𝑛𝑠𝑘: {0,… 2𝑙𝑠𝑐𝑎𝑙𝑎𝑟 − 1})
Such that the following conditions hold:
Note commitment integrity: 𝑐𝑚𝑜𝑙𝑑 = 𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚𝑜𝑙𝑑(𝑟𝑒𝑝𝑟𝕁(𝑔𝑑), 𝑟𝑒𝑝𝑟𝕁(𝑝𝑘𝑑), 𝑣

𝑜𝑙𝑑).

Merkle path validity: Either vold = 0; or (voucherpath, pos) is a valid Merkle path of depth
MerkleDepth, from 𝑐𝑚𝑢

= 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝕁(𝑟)(𝑐𝑚
𝑜𝑙𝑑) to the anchor 𝑟𝑡.

Value commitment integrity:

𝑐𝑣𝑜𝑙𝑑 = 𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑣𝑜𝑙𝑑(𝑣
𝑜𝑙𝑑)

Small order checks: 𝑔𝑑 and 𝑎𝑘 are not of small order. i.e. [ℎ𝕁] 𝑔𝑑 ≠ 𝒪𝕁, [ℎ𝕁] 𝑎𝑘 ≠ 𝒪𝕁

Nullifier integrity 𝑛𝑓𝑜𝑙𝑑 = 𝑃𝑅𝐹𝑛𝑘⋆
𝑛𝑓 (𝜌 ⋆), where

𝑛𝑘 ⋆ = 𝑟𝑒𝑝𝑟𝕁([𝑛𝑠𝑘]ℋ)

𝜌 ⋆= 𝑟𝑒𝑝𝑟𝕁(𝑀𝑖𝑥𝑖𝑛𝑔𝑃𝑒𝑑𝑒𝑟𝑠𝑒𝑛𝐻𝑎𝑠ℎ(𝑐𝑚
𝑜𝑙𝑑 , 𝑝𝑜𝑠))

Spend authority 𝑟𝑘 = 𝑠𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑢𝑏𝑛𝑙𝑖𝑐(𝛼, 𝑎𝑘)

Diversified address integrity 𝑝𝑘𝑑 = [𝑖𝑣𝑘] 𝑔𝑑 where

𝑖𝑣𝑘 = 𝐶𝑅𝐻𝑖𝑣𝑘

(𝑎𝑘 ⋆, 𝑛𝑘 ⋆)

𝑎𝑘 ⋆ = 𝑟𝑒𝑝𝑟𝕁(𝑎𝑘).

Given 𝑎𝑘, 𝑛𝑠𝑘, 𝑑, 𝑟𝑐𝑚, 𝛼, 𝑣𝑎𝑙𝑢𝑒, 𝑟𝑡 𝑎𝑛𝑑 𝑣𝑜𝑢𝑐ℎ𝑒𝑟𝑃𝑎𝑡ℎ, we generate the proof. simultaneously, we
generate 𝑐𝑣 𝑎𝑛𝑑 𝑟𝑘 as primary input, used to verify the proof.

6.2.4. Signature with Re-randomizable Keys

𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔 is used to prove knowledge of the spending key authorizing spending of an input
note.

 Knowledge of the spending key could have been proven directly in the Spend proof.

 23

The verifying key of the signature must be revealed in the Spend description so that the signature
can be checked by validators. To ensure that the verifying key cannot be linked to the shielded
payment address or spending key from which the note was spent, we use a signature scheme
with re-randomizable keys. The Spend statement proves that this verifying key is a re-
randomization of the spend authorization address key 𝑎𝑘 with a randomizer known to the signer.

The spend authorization signature is over the transaction hash, so that it cannot be replayed in
other transactions.

The hash algorithm that we use is SHA256, that is,

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒.𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑆ℎ𝑎256𝐻𝑎𝑠ℎ(𝑆𝐻𝐴256𝐻𝑎𝑠ℎ(𝑡𝑜𝑘𝑒𝑛𝐼𝑑)||𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑤𝐷𝑎𝑡𝑎).

For each Spend description, the signer uses a fresh spend authorization randomizer α:

1. Choose 𝛼
𝑅
← 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔. 𝐺𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚().

2. Let 𝑟𝑠𝑘 = 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑟𝑖𝑣𝑎𝑡𝑒(𝛼, 𝑎𝑠𝑘)
3. Let 𝑟𝑘 = 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔. 𝑑𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑟𝑠𝑘)
4. Generate a proof 𝜋𝑍𝐾𝑆𝑝𝑒𝑛𝑑 of the spend statement with 𝛼 in the auxiliary input and rk in the

primary input.
5. Let 𝑠𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔 = 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔. 𝑆𝑖𝑔𝑛𝑟𝑠𝑘(𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒.𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

The resulting 𝑠𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔 and 𝜋𝑍𝐾𝑆𝑝𝑒𝑛𝑑 are included in the spend description.

𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔 is instantiation of a kind of signature with re-randomizable keys 𝑆𝑖𝑔, which
defines:

• a type of randomizers 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚;

• a randomizer generator 𝑆𝑖𝑔. 𝐺𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚: ()
𝑅
←

𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚;

• a private key randomization algorithm 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑟𝑖𝑣𝑎𝑡𝑒: 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚 ×
 𝑆𝑖𝑔. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 → 𝑆𝑖𝑔. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒;
• a public key randomization algorithm 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑢𝑏𝑙𝑖𝑐: 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚 × 𝑆𝑖𝑔. 𝑃𝑢𝑏𝑙𝑖𝑐 →
 𝑆𝑖𝑔. 𝑃𝑢𝑏𝑙𝑖𝑐;
• a distinguished “identity” randomizer 𝒪𝑆𝑖𝑔.𝑅𝑎𝑛𝑑𝑜𝑚: 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚

Such that

• for any 𝛼: 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚, 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝛼: 𝑆𝑖𝑔. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 → 𝑆𝑖𝑔.𝑃𝑟𝑖𝑣𝑎𝑡𝑒 is injective and
easily invertible;

• 𝑆𝑖𝑔.𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝒪𝑆𝑖𝑔.𝑅𝑎𝑛𝑑𝑜𝑚
is the identity function on 𝑆𝑖𝑔. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒.

• for any 𝑠𝑘: 𝑆𝑖𝑔. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒, 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑟𝑖𝑣𝑎𝑡𝑒(𝛼, 𝑠𝑘) ∶ 𝛼
𝑅
←

𝑆𝑖𝑔.𝐺𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚()

is identically distributed to 𝑆𝑖𝑔. 𝐺𝑒𝑛𝑃𝑟𝑖𝑣𝑎𝑡𝑒().

• for any 𝑠𝑘: 𝑆𝑖𝑔. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 and 𝛼: 𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚,

𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝛼, 𝑆𝑖𝑔. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑠𝑘))
= 𝑆𝑖𝑔. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑆𝑖𝑔. 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑃𝑟𝑖𝑣𝑎𝑡𝑒(𝛼, 𝑠𝑘)).

6.2.5. Create Output Proof
 A valid instance of 𝜋𝑍𝐾𝑂𝑢𝑡𝑝𝑢𝑡 assures that given a primary input :

(𝑐𝑣𝑛𝑒𝑤: 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡. 𝑜𝑢𝑡𝑝𝑢𝑡,
𝑐𝑚𝑢: 𝔹

𝑙𝑚𝑒𝑟𝑘𝑙𝑒 ,
 𝑒𝑝𝑘: 𝕁)

The prover knows an auxiliary input:

 24

(𝑔𝑑: 𝕁,
𝑝𝑘 ⋆𝑑:𝔹

𝑙𝕁 ,
𝑣𝑛𝑒𝑤 : {0,… 2𝑙𝑣𝑎𝑙𝑢𝑒 − 1},
𝑟𝑐𝑣𝑛𝑒𝑤 : {0, … 2𝑙𝑠𝑐𝑎𝑙𝑎𝑟 − 1},

𝑐𝑚𝑜𝑙𝑑: 𝕁,
𝑟𝑐𝑚𝑟𝑐𝑚: {0, … 2𝑙𝑠𝑐𝑎𝑙𝑎𝑟 − 1},
𝑒𝑠𝑘: {0, …2𝑙𝑠𝑐𝑎𝑙𝑎𝑟 − 1})

Such that the following conditions hold:
Note commitment integrity: 𝑐𝑚𝑢 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝕁(𝑟)(𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚𝑛𝑒𝑤(𝑔 ⋆𝑑 , 𝑝𝑘 ⋆𝑑 , 𝑣

𝑛𝑒𝑤)), where

𝑔 ⋆𝑑= 𝑟𝑒𝑝𝑟𝕁(𝑔𝑑).

Value commitment integrity: 𝑐𝑣𝑛𝑒𝑤 = 𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑣𝑛𝑒𝑤(𝑣
𝑛𝑒𝑤)

Small order checks: 𝑔𝑑 is not of small order. i.e. [ℎ𝕁] 𝑔𝑑 ≠ 𝒪𝕁

 Ephemeral public key integrity 𝑒𝑝𝑘 = [𝑒𝑠𝑘] 𝑔𝑑.

Given 𝑒𝑠𝑘, 𝑑, 𝑟𝑐𝑚, 𝑝𝑘𝑑 , 𝑣𝑎𝑙𝑢𝑒, we generate the proof. simultaneously, we generate 𝑐𝑣 as primary
input, used to verify the proof.
6.2.6. Binding Signature

Spend transfers and Output transfers are used in each transaction. The net value of Spend
transfers minus Output transfers in a transaction is called the balancing value, measured in 𝑇𝑅𝑋
as a signed integer 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒.

𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒

is encoded explicitly in a transaction as the field valueBalance.

A positive balancing value takes value from the shielded value pool and adds it to the transparent
value pool. A negative balancing value does the reverse. As a result, positive 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒 is treated like
an input to the transparent value pool, whereas negative 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒 is treated like an output from
that pool.

Consistency of 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒 with the value commitments in Spend descriptions and Output
descriptions is enforced by the binding signature. This signature has a dual role in the protocol:

• To prove that the total value spent by Spend transfers, minus that produced by Output
transfers, is consistent with the 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒

field of the transaction;

• To prove that the signer knew the randomness used for the spend and output value
commitments, in order to prevent Output descriptions from being replayed by an
adversary in a different transaction. (A Spend description already cannot be replayed
due to its spend authorization signature.)

Instead of generating a key pair at random, we generate it as a function of the value commitments
in the Spend descriptions and Output descriptions of the transaction, and the balancing value.

Let 𝑟𝑒𝑝𝑟𝕁, 𝕁
(𝑟), 𝕁(𝑟)∗, and𝕁∗

(𝑟)
 be as defined in §3.7.

Let 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡, 𝒱 𝑎𝑛𝑑 ℛ be as defined in §3.8.

𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡: 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡. 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟 × {−
𝑟𝕁 − 1

2
… −

𝑟𝕁 + 1

2
} → 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡. 𝑂𝑢𝑡𝑝𝑢𝑡;

𝒱: 𝕁(𝑟)∗is the value base in 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡.

ℛ: 𝕁(𝑟)∗is the randomness base in 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡.

 25

Suppose that the transaction has:

• 𝑛1 Spend descriptions with value commitments 𝑐𝑣1…𝑛1
𝑜𝑙𝑑1 , committing to values 𝑣1…𝑛1

𝑜𝑙𝑑1 with

randomness 𝑟𝑐𝑣1…𝑛1
𝑜𝑙𝑑1 ;

• 𝑛2 transparent inputs, value 𝑣1…𝑛2
𝑜𝑙𝑑2 ;

• 𝑚1 Output descriptions with value commitments 𝑐𝑣1…𝑚1

𝑛𝑒𝑤1 , committing to values 𝑣1…𝑚1

𝑛𝑒𝑤1 with

randomness 𝑟𝑐𝑣1…𝑚1

𝑛𝑒𝑤1 ;

• 𝑚2 transparent outputs, value 𝑣1…𝑚2

𝑛𝑒𝑤2 ;

• balancing value vbalance.

Obviously, the following equation is satisfied, 𝑓𝑒𝑒 is the transfer fee.

∑𝑣𝑖
𝑜𝑙𝑑1

𝑛1

𝑖=1

+∑𝑣𝑖
𝑜𝑙𝑑2

𝑛2

𝑖=1

= ∑𝑣𝑗
𝑛𝑒𝑤1

𝑚1

𝑗=1

+ ∑𝑣𝑗
𝑛𝑒𝑤2

𝑚2

𝑗=1

+ 𝑓𝑒𝑒

In a correctly constructed transaction, 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = ∑ 𝑣𝑖
𝑜𝑙𝑑1𝑛1

𝑖=1 − ∑ 𝑣𝑗
𝑛𝑒𝑤1𝑚1

𝑗=1 = ∑ 𝑣𝑗
𝑛𝑒𝑤2𝑚2

𝑗=1 −

∑ 𝑣𝑖
𝑜𝑙𝑑2𝑛2

𝑖=1 + 𝑓𝑒𝑒, but validators cannot check this directly, because the values are hidden by the

commitments.

Instead, validators calculate the transaction binding verification key as:

𝑏𝑣𝑘 = (◇+
𝑖=1

𝑛
𝑐𝑣𝑖

𝑜𝑙𝑑) ◇- (◇+
𝑗=1

𝑚
𝑐𝑣𝑗

𝑛𝑒𝑤)◇- 𝑣𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡0(𝑣
𝑏𝑎𝑙𝑎𝑛𝑐𝑒)

(This key is not encoded explicitly in the transaction and must be recalculated.)
The signer knows 𝑟𝑐𝑣𝑜𝑙𝑑 and 𝑟𝑐𝑣𝑛𝑒𝑤 , and so can calculate the corresponding signing key as:

𝑏𝑠𝑘 = (⊞𝑖=1
𝑛 𝑟𝑐𝑣𝑖

𝑜𝑙𝑑) ⊟ (⊞𝑗=1
𝑚 𝑟𝑐𝑣𝑗

𝑜𝑙𝑑)

In order to check for implementation faults, the signer should also check that

𝑏𝑣𝑘 = 𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑆𝑖𝑔.𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑏𝑠𝑘).

𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑆𝑖𝑔 is instantiated as 𝑅𝑒𝑑𝐽𝑢𝑏𝑗𝑢𝑏, without use of key re-randomization.

6.2.7. Note Encryption

 Let 𝑝𝑘𝑑
𝑛𝑒𝑤: 𝐾𝐴. 𝑃𝑢𝑏𝑙𝑖𝑐𝑃𝑟𝑖𝑚𝑒𝑂𝑟𝑑𝑒𝑟 be the diversified transmission key for the intended

recipient address of a new note, and let 𝑔𝑑
𝑛𝑒𝑤 : 𝐾𝐴. 𝑃𝑢𝑏𝑙𝑖𝑐𝑃𝑟𝑖𝑚𝑒𝑂𝑟𝑑𝑒𝑟 be the corresponding

diversified base computed as 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑).

Since note encryption is used only in sending notes to receipt, we may assume that 𝑔𝑛𝑒𝑤 has
already been calculated and is not ⊥.

Let 𝑜𝑣𝑘:𝔹𝕐[𝑙𝑜𝑣𝑘/8]

∪ {⊥} be the outgoing viewing key of the shielded payment address from

which the note is being spent, or an outgoing viewing key associated with a [ZIP-32] account, or
⊥.

Let 𝒏𝒑 = (𝑑, 𝑣, 𝑟𝑐𝑚,𝑚𝑒𝑚𝑜) be the note plaintext, encoded when using.

 26

 Let 𝑐𝑣𝑛𝑒𝑤 be the value commitment for the new note, and let 𝑐𝑚𝑛𝑒𝑤

be the note commitment.

Then to encrypt:

Choose a uniformly random ephemeral private key 𝑒𝑠𝑘
𝑅
← 𝐾𝐴. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 \ {0} .

let 𝑒𝑝𝑘 = 𝐾𝐴. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑒𝑠𝑘, 𝑔𝑑
𝑛𝑒𝑤)

 let 𝑃𝑒𝑛𝑐 be the raw encoding of np

let 𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡 = 𝐾𝐴. 𝐴𝑔𝑟𝑒𝑒(𝑒𝑠𝑘, 𝑝𝑘𝑑
𝑛𝑒𝑤)

let 𝐾𝑒𝑛𝑐

= 𝐾𝐷𝐹

(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡, 𝑒𝑝𝑘)

let 𝐶𝑒𝑛𝑐

= 𝑆𝑦𝑚. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑛𝑐 (𝑃

𝑒𝑛𝑐)
if ovk = ⊥:

choose random 𝑜𝑐𝑘
𝑅
←

𝑆𝑦𝑚.𝑲 𝑎𝑛𝑑 𝒐𝒑

𝑅
←

𝔹𝕐[(𝑙𝕁+256)/8]

else:

let 𝑐𝑣 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑙𝕁(𝑟𝑒𝑝𝑟𝕁(𝑐𝑣
𝑛𝑒𝑤))

let 𝑐𝑚𝑢 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝕁(𝑟)(𝑐𝑚
𝑛𝑒𝑤))

let 𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙𝐾𝑒𝑦 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑙𝕁 (𝑟𝑒𝑝𝑟𝕁(𝑒𝑝𝑘))

let 𝑜𝑐𝑘 = 𝑃𝑅𝐹𝑜𝑣𝑘
𝑜𝑐𝑘

(𝑐𝑣, 𝑐𝑚𝑢, 𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙𝐾𝑒𝑦)

let 𝒐𝒑 = 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃𝑙𝕁+256(𝑟𝑒𝑝𝑟𝕁(𝑝𝑘𝑑
𝑛𝑒𝑤)||𝐼2𝐿𝐸𝐵𝑆𝑃256(𝑒𝑠𝑘))

 let 𝐶𝑜𝑢𝑡

= 𝑆𝑦𝑚.𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑜𝑐𝑘 (𝒐𝒑)

The resulting transmitted note ciphertext is (𝑒𝑝𝑘, 𝐶𝑒𝑛𝑐, 𝐶𝑜𝑢𝑡).

6.2.8. Note Decryption

The incoming viewing key (𝑖𝑣𝑘) holder could decrypt the ciphertexts to get note, while the
outgoing viewing key (𝑜𝑣𝑘) holder could decrypt to get the note too.

6.2.8.1. Note Decryption with ivk

Given ciphertexts (𝑒𝑝𝑘, 𝐶𝑒𝑛𝑐, 𝐶𝑜𝑢𝑡) from the output description, ivk holder could decrypt 𝐶𝑒𝑛𝑐 to
get note as follows.

let 𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡 = 𝐾𝐴. 𝐴𝑔𝑟𝑒𝑒(𝑖𝑣𝑘, 𝑒𝑝𝑘)

let 𝐾𝑒𝑛𝑐

= 𝐾𝐷𝐹𝑆𝑎𝑝𝑙𝑖𝑛𝑔

(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡, 𝑒𝑝𝑘)

let 𝑃𝑒𝑛𝑐

= 𝑆𝑦𝑚.𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑛𝑐

 (𝐶𝑒𝑛𝑐)

if 𝑃𝑒𝑛𝑐

= ⊥, return ⊥

 27

extract 𝒏𝒑 = (𝑑: 𝔹[𝑙𝑑], 𝑣 ∶ {0 . . 2𝑙𝑣𝑎𝑙𝑢𝑒

− 1}, 𝑟𝑐𝑚 ∶ 𝔹𝕐32],𝑚𝑒𝑚𝑜 ∶ 𝔹𝕐32]) from 𝑃𝑒𝑛𝑐

 let 𝑟𝑐𝑚 = 𝐿𝐸𝑂𝑆2𝐼𝑃256(𝑟𝑐𝑚)

and gd = 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑)

if 𝑟𝑐𝑚 ≥ 𝑟𝐽 or 𝑔𝑑 =⊥, return⊥

let 𝑝𝑘𝑑 = 𝐾𝐴. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑖𝑣𝑘, 𝑔𝑑)

let 𝑐𝑚′𝑢 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝕁(𝑟)(𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚𝑛𝑒𝑤(𝑟𝑒𝑝𝑟𝕁(𝑔𝑑), 𝑟𝑒𝑝𝑟𝕁(𝑝𝑘𝑑), 𝑣)).

if 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝑐𝑚
′
𝑢 ≠ 𝑐𝑚𝑢, return ⊥, else return np.

6.2.8.2. Note Decryption with ovk

Given ciphertexts (𝑒𝑝𝑘, 𝐶𝑒𝑛𝑐, 𝐶𝑜𝑢𝑡) from the output description, 𝑜𝑣𝑘 holder could decrypt
𝐶𝑒𝑛𝑐 𝑎𝑛𝑑 𝐶𝑒𝑛𝑐 to get note as follows.

let 𝑜𝑐𝑘 = 𝑃𝑅𝐹𝑜𝑣𝑘
𝑜𝑐𝑘(𝑐𝑣, 𝑐𝑚𝑢, 𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙𝐾𝑒𝑦)

let 𝑜𝑝 = 𝑆𝑦𝑚. 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑐𝑘 (𝐶
𝑜𝑢𝑡

)

if op = ⊥, return ⊥

extract (𝑝𝑘 ⋆ 𝑑: 𝔹
[𝑙𝕁], 𝑒𝑠𝑘: 𝔹𝕐[32]) from op

let 𝑒𝑠𝑘 = 𝐿𝐸𝑂𝑆2𝐼𝑃256(𝑒𝑠𝑘)

𝑎𝑛𝑑 𝑝𝑘𝑑 = 𝑎𝑏𝑠𝑡𝐽(𝑝𝑘 ⋆ 𝑑)

if 𝑒𝑠𝑘 ≥ 𝑟𝕁 𝑜𝑟 𝑝𝑘𝑑 ∉ 𝐾𝐴. 𝑃𝑢𝑏𝑙𝑖𝑐𝑃𝑟𝑖𝑚𝑒𝑂𝑟𝑑𝑒𝑟, return ⊥

let 𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡 = 𝐾𝐴. 𝐴𝑔𝑟𝑒𝑒(𝑒𝑠𝑘, 𝑝𝑘𝑑)

let 𝐾𝑒𝑛𝑐

= 𝐾𝐷𝐹(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡, 𝑒𝑝𝑘)

let 𝑃𝑒𝑛𝑐

= 𝑆𝑦𝑚.𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑛𝑐 (𝐶

𝑒𝑛𝑐)

if 𝑃𝑒𝑛𝑐

= ⊥, return ⊥

extract 𝑛𝑝 = (𝑑: 𝔹[𝑙𝑑], 𝑣 ∶ {0 . . 2𝑙𝑣𝑎𝑙𝑢𝑒

− 1}, 𝑟𝑐𝑚 ∶ 𝔹𝕐32],𝑚𝑒𝑚𝑜 ∶ 𝔹𝕐32]) from 𝑃𝑒𝑛𝑐

let 𝑟𝑐𝑚 = 𝐿𝐸𝑂𝑆2𝐼𝑃256(𝑟𝑐𝑚)

and gd = 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑)

if 𝑟𝑐𝑚 ≥ 𝑟𝐽 or 𝑔𝑑 =⊥, return⊥

 if 𝐾𝐴. 𝐷𝑒𝑟𝑖𝑣𝑒𝑃𝑢𝑏𝑙𝑖𝑐(𝑒𝑠𝑘, 𝑔𝑑
𝑛𝑒𝑤) ≠ 𝑒𝑝𝑘, return⊥

𝑙𝑒𝑡 𝑐𝑚′𝑢 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝕁(𝑟)(𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚𝑛𝑒𝑤(𝑟𝑒𝑝𝑟𝕁(𝑔𝑑), 𝑟𝑒𝑝𝑟𝕁(𝑝𝑘𝑑),𝑣)).

if 𝐿𝐸𝐵𝑆2𝑂𝑆𝑃256(𝑐𝑚
′
𝑢 ≠ 𝑐𝑚𝑢, return ⊥, else return np

6.2.9. Broadcast Transaction

After creating transaction, wallet broadcast it to the active peer node.

 28

6.3. Block chain

When receives a shielded transaction, block chain need verify the transaction. After verification,
the transaction could be executed.

6.3.1. Verify Transaction

Transaction verification includes the spend authority signature, spend proof, output proof,
binding signature, and nullifier.

6.3.1.1. Verify Spend Authority Signature

A verifier assures that the signature of SpendAuthSig is verified according to the verification
algorithm defined in §3.7.1.

6.3.1.2. Verify Spend Proof

A verifier assures that given a proof 𝜋𝑍𝐾𝑠𝑝𝑒𝑛𝑑 . 𝑝𝑟𝑜𝑜𝑓 and a primary input 𝑠𝑝𝑒𝑛𝑑𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡:

(𝑟𝑡:𝔹𝑙𝑀𝑒𝑟𝑘𝑙𝑒 ,
𝑐𝑣𝑜𝑙𝑑 : 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡. 𝑜𝑢𝑡𝑝𝑢𝑡,

𝑛𝑓𝑜𝑙𝑑: 𝔹𝑙𝑃𝑅𝐹𝑛𝑓 ,
 𝑟𝑘: 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔. 𝑃𝑢𝑏𝑙𝑖𝑐)

𝜋𝑍𝐾𝑠𝑝𝑒𝑛𝑑 . 𝑉𝑒𝑟𝑖𝑓𝑦𝑉𝐾(𝑠𝑝𝑒𝑛𝑑𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡, 𝜋𝑍𝐾𝑠𝑝𝑒𝑛𝑑 . 𝑝𝑟𝑜𝑜𝑓) = 𝑇𝑟𝑢𝑒 should be checked.

6.3.1.3. Verify Output Proof

A verifier assures that given a proof 𝜋𝑍𝐾𝑂𝑢𝑡𝑝𝑢𝑡 . 𝑝𝑟𝑜𝑜𝑓 and a primary input 𝑜𝑢𝑡𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡:

(𝑐𝑣𝑛𝑒𝑤 : 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡. 𝑜𝑢𝑡𝑝𝑢𝑡,
𝑐𝑚𝑢: 𝔹

𝑙𝑚𝑒𝑟𝑘𝑙𝑒 ,
 𝑒𝑝𝑘: 𝕁)

𝜋𝑍𝐾𝑜𝑢𝑡𝑝𝑢𝑡 . 𝑉𝑒𝑟𝑖𝑓𝑦𝑃𝐾(𝑜𝑢𝑡𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐼𝑛𝑝𝑢𝑡, 𝜋𝑍𝐾𝑜𝑢𝑡𝑝𝑢𝑡 . 𝑝𝑟𝑜𝑜𝑓) = 𝑇𝑟𝑢𝑒 should be checked.

6.3.1.4. Verify Binding Signature

The following key is used to verify binding signature.

𝑏𝑣𝑘 = (◇+
𝑖=1

𝑛
𝑐𝑣𝑖

𝑜𝑙𝑑) ◇- (◇+
𝑗=1

𝑚
𝑐𝑣𝑗

𝑛𝑒𝑤)◇- 𝑣𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡0(𝑣
𝑏𝑎𝑙𝑎𝑛𝑐𝑒)

The verify algorithm is instantiated in §3.7.1.

6.3.1.5. Verify Nullifier

The nullifier 𝑛𝑓:𝔹[𝑙𝑃𝑅𝐹𝑛𝑓]of the spend notes is revealed in spend description. It is enforced to be
unique within a valid block chain, in order to prevent double-spends.

A validator checks a nullifier is not in the nullifier set in order to verify the transaction.

6.3.1.6. Verify others

 29

In addition to verify above things, others should also be checked. For instance, transfer contract
fee should be equal to what we pre-define.

6.3.2. Execute Transaction

After verification, the transaction could be executed, that is, saved in the block chain.

6.3.2.1. Process Transparent Input

If the transaction input is from transparent address, we will first adjust the balance of the input
account, that is, subtract the input value from its account.

6.3.2.2. Save CM, Update Tree

In order to make the output transfer valid and shielded, we need save each note commitment. Get
each note commitment from Receive description, and save them into the Merkle tree and update.

6.3.2.3. Save Nullifier

In order to prevent the spend note from double-spent, we need save the nullifier of each spend
note into nullifier set. Get each nullifier from spend description, and store them into the
database.

6.3.2.4. Process Transparent Output

If one of the transaction output is to transparent address, we will first adjust the balance of the
transparent output account, that is, add the output value to its account.

6.4. Contract

6.4.1. User APIs

We support shielded transaction from a single address to multiple addresses.

The spend address and output address can be either transparent or shielded. However, we do not
support that spend address and output address both are transparent, in this case, it is an
ordinary transparent transaction.

We provide interfaces to help users build transactions, or users can build by themselves. If user
choose to build by themselves, it is him that generate spend proofs and output proofs when
needed.

There are 3 conditions if users build transactions by means of APIs we provide.

⚫ transfer from a transparent address to shielded address: users just input the following
fields:
◼ transparent_from_address: the spend transparent address
◼ from_amount: the spend value
◼ shieldedReceives: the output note

⚫ transfer from a shielded address to transparent address: users just input the following
fields:
◼ ask: the spend authorizing key
◼ nsk: the proof authorizing key
◼ ovk: the outgoing viewing key
◼ shieldedSpends: the spend note
◼ transparent _to_address: the output address

 30

◼ to_mount: the output value
⚫ transfer from a shielded address to shielded address: users just input the following fields:

◼ ask: the spend authorizing key
◼ nsk: the proof authorizing key
◼ ovk: the outgoing viewing key
◼ shieldedSpends: the spend note
◼ shieldedReceives: the output notes

In addition, we have defined many rpcs in “src/main/protos/api/api.proto” as following.

The above parameters are defined in “src/main/protos/api/api.proto”.

 31

 32

 33

6.4.2. Shielded Transfer Contract

Given spend proof or/and output proof, and other necessary information, we can build shielded
transfer contract.

There are 3 contracts we can construct, according to what users provide.

⚫ transfer from a transparent address to shielded address: users need provide the following
fields:
◼ transparent_from_address: the spend transparent address
◼ from_amount: the spend value
◼ spend_description: null
◼ receive_description: the receive description
◼ binding_signature: the binding signature
◼ transparent_to_address: the ouput address, null if no transparent output.
◼ to_amount: the output amount, 0 if no transparent output.

⚫ transfer from a shielded address to transparent address: users need provide the following
fields:
◼ transparent_from_address: null
◼ from_amount: 0
◼ spend_description: the spend description
◼ receive_description: null

 34

◼ binding_signature: the binding signature
◼ transparent_to_address: the ouput address
◼ to_amount: the output amount

⚫ transfer from a shielded address to shielded address: users just input the following fields:
◼ transparent_from_address: null
◼ from_amount: 0
◼ spend_description: the spend description
◼ receive_description: the receive descriptions
◼ binding_signature: the binding signature
◼ transparent_to_address: null.
◼ to_amount: 0

The shielded contract is as following.

7. References

[ANWW2013] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. BLAKE2: simpler, smaller, fast as MD5. January 29, 2013.
URL:https://blake2.net/ #sp(visited on 2016-08-14) (↑ p52, 136).

[Bowe2017] Sean Bowe. ebfull/pairing source code, BLS12-381 – README.md as of commit
e726600. URL: https://github.com/ebfull/pairing/tree/e72660056e00c93d6b0
54dfb08ff34a1c67cb799/src/bls12_381 (visited on 2017-07-16) (↑ p67).

[Groth2016] Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Cryptology
ePrint Archive: Report 2016/260. Last revised May 31, 2016. URL:
https://eprint.iacr.org/2016/260 (visited on 2017-08-03) (↑ p71, 72, 98, 143).

[Zcash] Sean Bowe, Taylor Hornby, Nathan Wilcox, Zcash Protocol Specification, Sep. 2018,
[online]Available:https://github.com/zcash/zips/blob/master/protocol/protocol.
pdf.

Appendices
A. Demo

https://blake2.net/#sp
https://github.com/ebfull/pairing/tree/e72660056e00c93d6b0

 35

In this section, we give 2 demos. One is transaction from transparent address to shielded address,
the other one is from shielded address to shielded address.

A.1 Transaction from public address to shielded address

A.1.1 Create shielded transaction

call api: wallet/createshieldedtransaction

Result:

A.1.2 Signature

call api to sign (use the private key of the public address)

api: wallet/gettransactionsign

param:

 36

Result:

A.1.3 Broadcast Transaction

api: wallet/broadcasttransaction

param:

Result:

A.2 Transaction from shielded address to shielded address

 37

A.2.1 Get voucher

Call api getmerkletreevoucherinfo to get the voucher of the shield address, this info will be used
when create shielded transaction

param:

result:

A.2.2 Create transaction

call api: wallet/createshieldedtransaction

result:

 38

A.2.3 Broadcast Transaction

There is no need to sign this transaction.

call api: wallet/broadcasttransaction

param:

	1. Overview
	2. Notation
	3. Cryptographic Primitives
	3.1. Encoding rules
	3.2. Constants
	3.3. Hash Functions
	3.3.1. BLAKE2 Hash Function
	3.3.2. CRHivk Hash Function
	3.3.3. DiversifyHash Function
	3.3.4. Pedersen Hash Function
	3.3.5. Mixing Pedersen Hash Function
	3.4. Pseudo Random Function
	3.5. Authenticated One-Time Symmetric Encryption
	3.6. Key Agreement and Derivation
	3.7. Jubjub and RedJubjub
	3.7.1. Spend Authorization Signature
	3.7.2. Binding Signature
	3.8. Group Hash into Jubjub
	3.9. Commitment Schemes
	3.9.1. Note Commitments
	3.9.2. Value Commitments
	4. Concepts
	4.1. Payment Addresses and Keys
	4.2. Notes
	4.3. Transactions and Treestates
	4.4. Spend Descriptions and Receive Descriptions
	4.5. Nullifier Sets
	5. zk-SNARK
	5.1. Zero-Knowledge Proof Model
	5.2. Construct zk-SNARK
	5.2.1. Generate Arithmetic Circuit
	5.2.2. R1CS
	5.2.3. QAP
	5.2.4. zk-SNARK
	6. Shielded Transaction
	6.1. Trusted Setup
	6.2. Wallet
	6.2.1. Create Payment Address
	6.2.2. Scan Blockchain
	6.2.3. Create Spend Proof
	6.2.4. Signature with Re-randomizable Keys
	6.2.5. Create Output Proof
	6.2.6. Binding Signature
	6.2.7. Note Encryption
	6.2.8. Note Decryption
	6.2.8.1. Note Decryption with ivk
	6.2.8.2. Note Decryption with ovk
	6.2.9. Broadcast Transaction
	6.3. Block chain
	6.3.1. Verify Transaction
	6.3.1.1. Verify Spend Authority Signature
	6.3.1.2. Verify Spend Proof
	6.3.1.3. Verify Output Proof
	6.3.1.4. Verify Binding Signature
	6.3.1.5. Verify Nullifier
	6.3.1.6. Verify others
	6.3.2. Execute Transaction
	6.3.2.1. Process Transparent Input
	6.3.2.2. Save CM, Update Tree
	6.3.2.3. Save Nullifier
	6.3.2.4. Process Transparent Output
	6.4. Contract
	6.4.1. User APIs
	6.4.2. Shielded Transfer Contract
	7. References
	Appendices
	A. Demo
	A.1 Transaction from public address to shielded address
	A.1.1 Create shielded transaction
	A.1.2 Signature
	A.1.3 Broadcast Transaction
	A.2 Transaction from shielded address to shielded address
	A.2.1 Get voucher
	A.2.2 Create transaction
	A.2.3 Broadcast Transaction

